New solutions to the tetrahedron equation from quantized six-vertex models

Atsuo Kuniba (Univ. Tokyo)
Mathematical Science Institute Colloquium
Australian National University, 30 March 2023
Based on a joint work with S. Matsuike and A. Yoneyama
(arXiv:2208.10258, to appear in Commun. Math. Phys.)

1. Introduction
2. Quantized (6V \& YBE)
3. Solutions
4. Conjectures on $\operatorname{RRRR}=R R R R$

1. Introduction

2-dimensional (2D) R-matrix

$$
\begin{aligned}
& R: V \otimes V \rightarrow V \otimes V \quad \text { i.e. } R \in \operatorname{End}\left(V^{\otimes 2}\right) \\
& V=\oplus_{n} \mathbb{C}|n\rangle=\left\{\begin{array}{l}
\text { space of } 1 \text {-particle states } \\
\text { space of local spin states }
\end{array}\right. \\
& R(|i\rangle \otimes|j\rangle)=\sum_{a b} R_{i j}^{a b}|a\rangle \otimes|b\rangle
\end{aligned}
$$

Yang-Baxter equation

$$
R_{12} R_{13} R_{23}=R_{23} R_{13} R_{12} \in \operatorname{End}\left(V^{\otimes 3}\right),
$$

where $R_{i j}$ acts on the i th and j th components:

$$
R_{12}: V \otimes V \otimes V, \quad R_{23}: V \otimes V \otimes V, \quad R_{13}: V \otimes V \otimes V
$$

Yang-Baxter equation implies

- Factorization of 3 particle scattering amplitude into 2 body ones
- Commutativity of row transfer matrices in lattice models

Key to quantum integrability in 2D

N4 unknows
N^{6} equations

What about 3D?

Tetrahedron equation (A.B. Zamolodchikov (1980))

$$
\begin{aligned}
R: V \otimes V \otimes V & \rightarrow V \otimes V \otimes V \\
R_{456} R_{236} R_{135} R_{124} & =R_{124} R_{135} R_{236} R_{456} \in \operatorname{End}\left(V^{\otimes 6}\right)
\end{aligned}
$$

$R=\left\{\begin{array}{l}3 \text { string scattering amplitude in }(2+1) \mathrm{D} \\ \text { local Boltzmann weight of the vertex in 3D }\end{array}\right.$

Naively, for N state model
N^{6} unknows
N12 equations

The first non-trivial solution was established in early 80's by Zamolodchikov and Baxter.

2. Quantized (6V \& YBE)

YBE:
 $$
L_{23} L_{13} L_{12}=L_{12} L_{13} L_{23}
$$

Quantized YBE: $\quad R_{456} L_{236} L_{135} L_{124}=L_{124} L_{135} L_{236} R_{456}$
... YBE up to conjugation. Also called RLLL relation or local YBE, etc.
Appeared in several guises and has been studied from various viewpoints by Maillet, Nijhoff, Korepanov, Bazhanov, Kashaev, Mangazeev, Sergeev, Stroganov, Okado, Maruyama, Yoneyama, K, \cdots.

2. Quantized (6V \& YBE)

YBE:
 $L_{23} L_{13} L_{12}=L_{12} L_{13} L_{23}$

Quantized YBE: $\quad R_{456} L_{236} L_{135} L_{124}=L_{124} L_{135} L_{236} R_{456}$
... YBE up to conjugation. Also called RLLL relation or local YBE, etc.
Appeared in several guises and has been studied from various viewpoints by Maillet, Nijhoff, Korepanov, Bazhanov, Kashaev, Mangazeev, Sergeev, Stroganov, Okado, Maruyama, Yoneyama, K, \cdots.

Has a connection to the quantum group theory, and generalizations to
Quantized reflection equation $\quad K(L G L G)=(G L G L) K$
Quantized G_{2} reflection equation $\quad F(L J L J L J)=(J L J L J L) F$

Intriguing applications to stationary states in multispecies totally asymmetric simple-exclusion/zero-range processes in 1D.

$$
L_{12} \stackrel{\text { "quantization" }}{L_{\mathbb{C}^{2} \otimes \mathbb{C}^{2}}^{123}}
$$

... L-matrix whose elements are
$\left\{\begin{array}{l}\mathcal{W}_{q}(q \text {-Weyl algebra)-valued } \\ \\ \mathcal{O}_{q}(q \text {-Oscillator algebra)-valued }\end{array}\right.$

... L-matrix whose elements are
$\left\{\begin{array}{l}\mathcal{W}_{q}(q \text {-Weyl algebra }) \text {-valued } \longrightarrow L^{X} \\ \\ \mathcal{O}_{q}(q \text {-Oscillator algebra) }) \text {-valued } \longrightarrow L^{Z}\end{array}\right.$ Two representations of \mathcal{W}_{q}

We will consider L^{X}, L^{Z}, L^{O}
$\mathcal{W}_{q} \quad q$-Weyl algebra

$$
X Z=q Z X
$$

Representations $\left\{\begin{array}{l}\pi_{X}: X|m\rangle=q^{m}|m\rangle, \quad Z|m\rangle=|m+1\rangle \\ \pi_{Z}: X|m\rangle=|m-1\rangle, \quad Z|m\rangle=q^{m}|m\rangle\end{array}\right.$

These are irreducible representations on

$$
F=\bigoplus_{m \in \mathbb{Z}} \mathbb{C}|m\rangle
$$

π_{X} vs $\pi_{Z} \quad$.. "coordinate" vs "momentum " representations of the q-canonical commutation relation.

$$
\begin{array}{cc}
\mathbf{k} \mathbf{a}^{+}=q \mathbf{a}^{+} \mathbf{k}, & \mathbf{a}^{+} \mathbf{a}^{-}=1-\mathbf{k}^{2} \\
\mathbf{k} \mathbf{a}^{-}=q^{-1} \mathbf{a}^{-} \mathbf{k}, & \mathbf{a}^{-} \mathbf{a}^{+}=1-q^{2} \mathbf{k}^{2}
\end{array}
$$

$\pi_{O}: \mathbf{k}|m\rangle=q^{m}|m\rangle, \mathbf{a}^{+}|m\rangle=|m+1\rangle, \mathbf{a}^{-}|m\rangle=\left(1-q^{2 m}\right)|m-1\rangle$
π_{O} is an irreducible representation on

$$
F_{+}=\bigoplus_{m \in \mathbb{Z}_{\geq 0}} \mathbb{C}|m\rangle
$$

There is an embedding $\mathcal{O}_{q} \hookrightarrow \mathcal{W}_{q}$

$$
\begin{aligned}
& \mathbf{k} \longmapsto X \\
& \mathbf{a}^{+} \longmapsto Z \\
& \mathbf{a}^{-} \longmapsto Z^{-1}\left(1-X^{2}\right)
\end{aligned}
$$

$L^{A}(A=X, Z, O)$ are defined by quantized 6 V weights $\pi_{A}(\underset{j}{i \stackrel{b}{\rightarrow} a})$

\(\left.\begin{array}{cccccc}L^{X}

L^{Z}\end{array}\right\}\)| | r | s | $t w X$ | $-q t X$ |
| :---: | :---: | :---: | :---: | :---: |
| L^{O} | 1 | 1 | $\mu \mathbf{k}$ | $-q \mu^{-1} \mathbf{k}$ |
| \mathbf{a}^{+} | $Z^{-1}\left(r s-t^{2} w X^{2}\right)$ | | | |

r, s, t, w, μ are parameters.

Relations of generators in $\mathcal{W}_{q}, \mathcal{O}_{q}$ may be viewed as quantizations of the "free-fermion condition" of 6 V .

Quantized YBE $=$ RLLL relation $=$ a version of tetrahedron equation

$$
\begin{aligned}
R_{456} L_{236} L_{135} L_{124} & =L_{124} L_{135} L_{236} R_{456} \\
R \sum_{\alpha, \beta, \gamma}\left(\mathcal{L}_{i j}^{\alpha \beta} \otimes \mathcal{L}_{\alpha k}^{a \gamma} \otimes \mathcal{L}_{\beta \gamma}^{b c}\right) & =\sum_{\alpha, \beta, \gamma}\left(\mathcal{L}_{\alpha \beta}^{a b} \otimes \mathcal{L}_{i \gamma}^{\alpha c} \otimes \mathcal{L}_{j k}^{\beta \gamma}\right) R
\end{aligned}
$$

$$
\mathcal{L}_{\gamma \delta}^{\alpha \beta}=\gamma \stackrel{\underset{\delta}{\beta}}{\stackrel{\beta}{4}} \alpha
$$

R depends on the choice of the three kinds of L 's as

$$
\begin{aligned}
& R L^{Z} L^{Z} L^{Z}=L^{Z} L^{Z} L^{Z} R \longrightarrow R=R^{Z Z Z} \\
& R L^{Z} L^{O} L^{O}=L^{O} L^{O} L^{Z} R \longrightarrow R=R^{O O Z}
\end{aligned}
$$

In general

$$
R L^{C} L^{B} L^{A}=L^{A} L^{B} L^{C} R \longrightarrow R=R^{A B C}
$$

RLLL relation for q-Weyl algebra case

$$
Y_{\alpha}=Z^{-1}\left(r_{\alpha} s_{\alpha}-t_{\alpha}^{2} w_{\alpha} X^{2}\right)
$$

$$
\begin{aligned}
& R(1 \otimes X \otimes X)=(1 \otimes X \otimes X) R, \\
& R\left(r_{2} t_{1} X \otimes 1 \otimes Y_{3}+t_{3} Z \otimes Y_{2} \otimes X\right)=r_{1} t_{2}\left(1 \otimes X \otimes Y_{3}\right) R, \\
& R\left(-q t_{1} t_{3} w_{1} X \otimes Y_{2} \otimes X+r_{2} Y_{1} \otimes 1 \otimes Y_{3}\right)=r_{1} r_{3}\left(1 \otimes Y_{2} \otimes 1\right) R, \\
& r_{1} t_{2} R(1 \otimes X \otimes Z)=\left(r_{2} t_{1} X \otimes 1 \otimes Z+t_{3} Y_{1} \otimes Z \otimes X\right) R, \\
& R\left(q r_{2} t_{1} t_{3} w_{3} X \otimes 1 \otimes X-Z \otimes Y_{2} \otimes Z\right)=\left(q r_{2} t_{1} t_{3} w_{3} X \otimes 1 \otimes X-Y_{1} \otimes Z \otimes Y_{3}\right) R, \\
& R\left(t_{1} w_{1} X \otimes Y_{2} \otimes Z+r_{2} t_{3} w_{3} Y_{1} \otimes 1 \otimes X\right)=r_{3} t_{2} w_{2}\left(Y_{1} \otimes X \otimes 1\right) R, \\
& R(X \otimes X \otimes 1)=(X \otimes X \otimes 1) R, \\
& s_{3} t_{2} R\left(Y_{1} \otimes X \otimes 1\right)=\left(t_{1} X \otimes Y_{2} \otimes Z+s_{2} t_{3} Y_{1} \otimes 1 \otimes X\right) R, \\
& s_{1} s_{3} R\left(1 \otimes Y_{2} \otimes 1\right)=\left(-q t_{1} t_{3} w_{3} X \otimes Y_{2} \otimes X+s_{2} Y_{1} \otimes 1 \otimes Y_{3}\right) R, \\
& r_{1} r_{3} R(1 \otimes Z \otimes 1)=\left(-q t_{1} t_{3} w_{1} X \otimes Z \otimes X+r_{2} Z \otimes 1 \otimes Z\right) R, \\
& r_{3} t_{2} w_{2} R(Z \otimes X \otimes 1)=\left(t_{1} w_{1} X \otimes Z \otimes Y_{3}+r_{2} t_{3} w_{3} Z \otimes 1 \otimes X\right) R, \\
& R(X \otimes X \otimes 1)=(X \otimes X \otimes 1) R, \\
& R\left(t_{1} X \otimes Z \otimes Y_{3}+s_{2} t_{3} Z \otimes 1 \otimes X\right)=s_{3} t_{2}(Z \otimes X \otimes 1) R, \\
& R\left(-q s_{2} t_{1} t_{3} w_{1} X \otimes 1 \otimes X+Y_{1} \otimes Z \otimes Y_{3}\right)=\left(-q s_{2} t_{1} t_{3} w_{1} X \otimes 1 \otimes X+Z \otimes Y_{2} \otimes Z\right) R, \\
& R\left(s_{1} t_{2} w_{2} 1 \otimes X \otimes Y_{3}=\left(s_{2} t_{1} w_{1} X \otimes 1 \otimes Y_{3}+t_{3} w_{3} Z \otimes Y_{2} \otimes X\right) R,\right. \\
& R\left(-q t_{1} t_{3} w_{3} X \otimes Z \otimes X+s_{2} Z \otimes 1 \otimes Z\right)=s_{1} s_{3}(1 \otimes Z \otimes 1) R, \\
& R\left(t_{3} w_{3} Y_{1} \otimes Z \otimes X+s_{2} t_{1} w_{1} X \otimes 1 \otimes Z\right)=s_{1} t_{2} w_{2}(1 \otimes X \otimes Z) R, \\
& R(1 \otimes X \otimes X)=(1 \otimes X \otimes X) R .
\end{aligned}
$$

$R=R^{Z Z Z}$ case

$R(|i\rangle \otimes|j\rangle \otimes|k\rangle)=\sum_{a, b, c} R_{i, j, k}^{a, b, c}|a\rangle \otimes|b\rangle \otimes|c\rangle$

$(0,0,1,0,0,1): \quad R_{i, j, k}^{a, b+1, c+1}=R_{i, j-1, k-1}^{a, b, c}$,
$(0,0,1,0,1,0): \quad q^{c} r_{2} w_{1} R_{i, j, k}^{a+1, b, c}+q^{-a+b} w_{3}\left(r_{1} s_{1} R_{i, j, k}^{a, b+1}+t_{1} w_{1} R_{i, j, k}^{a+2, b, c+1}\right)=q^{k} r_{1} w_{2} R_{i, j}^{a, b-c, k}$,
$(0,0,1,1,0,0): \quad q^{a+c} r_{2} R_{i, j, k}^{a, b}+q^{b+1} t_{1} w_{3} R_{i, j, k}^{a+1, b, c+1}=q^{j} r_{1} r_{3} R_{i, j, k}^{a, b, c}$,
$(0,1,0,0,0,1): \quad q^{-c} r_{1} w_{2}\left(r_{3} s_{3} R_{i, j, k}^{a, b+1, c}+t_{3} w_{3} R_{i, j, k}^{a, b+1, c+2}\right)=q^{-k} r_{2} w_{1}\left(r_{3} s_{3} R_{i-1}^{a, b, j, k}, q^{2} t_{3} w_{3} R_{i-1, j, j-2}^{a, b, c}\right)+q^{i-j} w_{3}\left(r_{2} s_{2} R_{i, j, k-1}^{a, b, c}+q^{2} t_{2} w_{2} R_{i, j-2, k-1}^{a, b c}\right)$,
$(0,1,0,0,1,0)$
$q r_{2} t_{3} w_{1} R_{i, j, k}^{a+1, b, c+1}+q^{-a+b-c}\left(r_{3} s_{3}\left(r_{1} s_{1} R_{i, j, k}^{a, b, c}+t_{1} w_{1} R_{i, j, k}^{a+2, b, c}\right)+t_{3} w_{3}\left(r_{1} s_{1} R_{i, j, k}^{a, b, c+2}+t_{1} w_{1} R_{i, j, k}^{a+2, b, c+2}\right)\right)$

$$
=q r_{2} t_{3} w_{1} R_{i-1, j, k-1}^{a, b, c}+q^{i-j+k}\left(r_{2} s_{2} R_{i, j, k}^{a, b, c}+q^{2} t_{2} w_{2} R_{i, j-2, k}^{a, b, c}\right),
$$

$(0,1,0,1,0,0): q^{a} r_{2} t_{3} R_{i, j, k}^{a, b, c+1}+q^{b-c} t_{1}\left(r_{3} s_{3} R_{i, j, k}^{a+1, b, c}+t_{3} w_{3} R_{i, j, k}^{a+1, b, c+2}\right)=q^{i} r_{3} t_{2} R_{i, j}^{a, b, c, c}$,
$(0,1,1,0,1,1): \quad R_{i, j, k}^{a+1, b+1, c}=R_{i-1, j-1, k}^{a, b, c}$,
$(0,1,1,1,0,1): \quad q^{a} s_{3} w_{2} R_{i, j, k}^{a, b+1, c}=q^{i} s_{2} w_{3} R_{i, j, k-1}^{a, b, c}+q^{j-k} w_{1}\left(r_{3} s_{3} R_{i-1, j, k}^{a, b, c}+t_{3} w_{3} q^{2} R_{i-1, j, j,-2}^{a, b, c}\right)$,
$(0,1,1,1,1,0): \quad q^{b} s_{1} s_{3} R_{i, j, k}^{a, b, c}=q^{i+k} s_{2} R_{i, j, k}^{a, b}+q^{j+1} t_{3} w_{1} R_{i-1, j, k, k-1}^{a, b, c}$,
$(1,0,0,0,0,1): q^{-b} r_{1} r_{3}\left(r_{2} s_{2} R_{i, j, k}^{a, b, c}+t_{2} w_{2} R_{i, j, k}^{a, b+c, c}\right)=q^{-j+1} t_{1} w_{3}\left(r_{2} s_{2} 2_{i=1, j, k-1}^{a, b, c}+q^{2} t_{2} w_{2} R_{i-1, j, j, k-1}^{a, b}\right)$

$$
+q^{-i-k} r_{2}\left(r_{1} s_{1}\left(r_{3} s_{3} R_{i, j, k}^{a, b, c}+q^{2} t_{3} w_{3} R_{i, j, k-2} a_{2,-, c}^{a, c}\right)+q^{2} t_{1} w_{1}\left(r_{3} s_{3} R_{i-2, j, k}^{a, b, c}+q^{2} t_{3} w_{3} A_{i-2, j, k-2}^{a, b, c}\right)\right),
$$

$(1,0,0,0,1,0): \quad q^{-a} r_{3} t_{2}\left(r_{1} s_{1} R_{i, j, k}^{a, b+c}+t_{1} w_{1} R_{i, j, k}^{a+2, b+1, c}\right)=q^{-i} r_{2} t_{3}\left(r_{1} s_{1} R_{i, j, k-1}^{a, b, c}+t_{1} w_{1} q^{2} R_{i-2, j, k-1}^{a, b, c}\right)+q^{-j+k} t_{1}\left(r_{2} s_{2} R_{i-1, j, k}^{a, b, c}+q^{2} t_{2} w_{2} R_{i-1, j-2, k}^{a, b, c}\right)$,
$(1,0,0,1,0,0): \quad R_{i, j, k}^{a+1, b+1, c}=R_{i-1, j-1, k}^{a, b, c}$,
$(1,0,1,0,1,1): \quad q^{-a} s_{2} w_{3}\left(r_{1} s_{1} R_{i, j, k}^{a, b, c+1}+t_{1} w_{1} R_{i, j, k}^{a+2, b, c+1}\right)+q^{-b+c} w_{1}\left(r_{2} s_{2} R_{i, j}^{a+1, b, c}+t_{2} w_{2} R_{i, j, k}^{a+1, b+2, c}\right)=q^{-i} s_{3} w_{2}\left(r_{1} s_{1} R_{i, j}^{a, b, c},{ }^{a}+q^{2} t_{1} w_{1} R_{i-2, j, j-k}^{a, b, c}\right)$, $q s_{2} t_{1} w_{3} R_{i, j, k}^{a+1, b, c+1}+q^{a-b+c}\left(r_{2} s_{2} R_{i, j, k}^{a, b}+t_{2} w_{2} R_{i, j, k}^{a, b+c, c}\right)$

$$
=q s_{2} t_{1} w_{3} R_{i-1, j, k-1}^{a, b, c}+q^{-i+j-k}\left(r_{1} s_{1}\left(r_{3} s_{3} R_{i, j, k}^{a, b, c}+q^{2} t_{3} w_{3} R_{i, j, k-2}^{a, b, c}\right)+q^{2} t_{1} w_{1}\left(r_{3} s_{3} R_{i-2, j, k}^{a, a, c}+q^{2} t_{3} w_{3} R_{i-2, j, k-2}\right)\right),
$$

$(1,0,1,1,1,0): \quad q^{c} s_{1} t_{2} R_{i, j, k}^{a, b+1, c}=q^{k} s_{2} t_{1} R_{i-1,1, k}^{a, b}+q^{-i+j} t_{3}\left(r_{1} s_{1} R_{i, j, k-1}^{a, b, c}+q^{2} t_{1} w_{1} R_{i-2, j, k-1}^{a, b, c}\right)$,
$(1,1,0,0,1,1): \quad q^{-a-c} s_{2}\left(r_{1} s_{1}\left(r_{3} s_{3} R_{i, j, k}^{a, b, c}+t_{3} w_{3} R_{i, j, k}^{a, b, c+2}\right)+t_{1} w_{1}\left(r_{3} s_{3} R_{i, j, k}^{a+2, b, c}+t_{3} w_{3} R_{i, j, k}^{a+2, b, c+2}\right)\right)$

$$
+q^{-b+1} t_{3} w_{1}\left(r_{2} s_{2} R_{i, j, k}^{a+1, b, c+1}+t_{2} w_{2} R_{i, j, k}^{a+1, b+2, c+1}\right)=q^{-j} s_{1} s_{3}\left(r_{2} s_{2} s_{i, j, k}^{a, b, c}+q^{2} t_{2} w_{2} R_{i, j-2, k}^{a, b, c}\right),
$$

$(1,1,0,1,0,1): q^{-c} s_{2} t_{1}\left(r_{3} s_{3} R_{i, j, k}^{a+1, c, c}+t_{3} w_{3} R_{i, j, k}^{a+1, b, c+2}\right)+q^{a-b} t_{3}\left(r_{2} s_{2} R_{i, j, k}^{a, b, c+1}+t_{2} w_{2} R_{i, j, k}^{a, b+2, c+1}\right)=q^{-k} s_{1} t_{2}\left(r_{3} s_{3} R_{i, j-1, k}^{a, b, c}+q^{2} t_{3} w_{3} R_{i, j-1, k-2}^{a, b, c}\right)$,
$(1,1,0,1,1,0): \quad R_{i, j, k}^{a, b+1, c+1}=R_{i, j-1, k-1}^{a, b, c}$.

Result

(1) There always exists a unique R up to normalization in each sector specified by an appropriate parity condition.

The solution RABC is explicitly obtained for

ABC	feature	locally finiteness
ZZZ	factorized	no
OZZ	${ }_{2} \phi_{1}$	no
ZZO	${ }_{2} \phi_{1}$	no
ZOZ	${ }_{3} \phi_{2}$-like	no
OOZ	factorized	yes
ZOO	factorized	yes
OZO	factorized	no
OOO	${ }_{2} \phi_{1}$	yes
XXZ	factorized	no
ZXX	factorized	no
XZX	factorized	no

New except for 000 .
$R(|i\rangle \otimes|j\rangle \otimes|k\rangle)=\sum_{a, b, c} R_{i, j, k}^{a, b, c}|a\rangle \otimes|b\rangle \otimes|c\rangle$
We say that R is locally finite if $R_{i, j, k}^{a, b, c}=0$ for all but finitely many (a,b,c) for any given (i,j,k).
(2) Relation to quantized coordinate ring $\mathrm{Aq}\left(\mathrm{s} \mathrm{I}_{\mathrm{n}}\right)$
(3) Conjecture on tetrahedron equation of type $R R R R=R R R R$

$$
\begin{aligned}
& (z ; q)_{m}=\frac{(z ; q)_{\infty}}{\left(z q^{m} ; q\right)_{\infty}}, \quad(z ; q)_{\infty}=\prod_{n \geq 0}\left(1-z q^{n}\right) \\
& { }_{2} \phi_{1}\left(\begin{array}{c}
\alpha, \beta \\
\gamma
\end{array} ; q, z\right)=\sum_{n \geq 0} \frac{(\alpha ; q)_{n}(\beta ; q)_{n}}{(\gamma ; q)_{n}(q ; q)_{n}} z^{n}
\end{aligned}
$$

3. Solutions

$R^{Z Z Z}$

$$
\begin{aligned}
& R^{Z Z Z} \in \operatorname{End}(F \otimes F \otimes F) \\
& \underset{\left(r_{1}, s_{1}, t_{1}, w_{1}\right)}{\boldsymbol{\sim}} \overbrace{\left(r_{2}, s_{2}, t_{2}, w_{2}\right)}^{\text {(}} \\
& R_{i, j, k}^{a, b, c}=\left(\frac{r_{2}}{t_{1} t_{3} w_{1}}\right)^{\frac{d_{1}}{2}}\left(\frac{s_{2}}{t_{1} t_{3} w_{3}}\right)^{\frac{d_{2}}{2}}\left(\frac{t_{2}}{s_{1} t_{3}}\right)^{\frac{d_{3}}{2}}\left(\frac{t_{2} w_{2}}{s_{3} t_{1} w_{1}}\right)^{\frac{d_{4}}{2}} \\
& \times q^{\varphi} \frac{\Phi_{d_{2}}\left(\frac{s_{1} s_{3}}{s_{2}}\right) \Phi_{d_{3}}\left(\frac{r_{3} w_{2}}{s_{3} w_{1}}\right) \Phi_{d_{4}}\left(\frac{r_{1} w_{3}}{s_{1} w_{2}}\right)}{\Phi_{-d_{1}}\left(\frac{q^{2} r_{1} r_{3}}{r_{2}}\right) \Phi_{d_{3}+d_{4}}\left(\frac{r_{1} r_{3} w_{3}}{s_{1} s_{3} w_{1}}\right)}, \\
& \varphi=\frac{1}{4}\left(\left(d_{1}-d_{2}\right)\left(d_{1}+d_{2}+d_{3}+d_{4}\right)+d_{3} d_{4}\right)-d_{1}, \\
& \binom{d_{1}}{d_{2}}=\binom{a+c-j}{b-i-k}, \quad\binom{d_{3}}{d_{4}}=\binom{-a-b+c+i+j-k}{a-b-c-i+j+k} \\
& \Phi_{m}(z)=\frac{1}{\left(z q^{m} ; q^{2}\right)_{\infty}} \quad(m \in \mathbb{Z}), \\
& \text { Factorized } \\
& \text { Not locally finite }
\end{aligned}
$$

$R^{0 Z Z}$

$R^{O Z Z} \in \operatorname{End}\left(F_{+} \otimes F \otimes F\right)$

$$
\begin{aligned}
R_{i, j, k}^{a, b, c}= & \left(\frac{r_{2}}{r_{3}}\right)^{a}\left(\frac{s_{3}}{s_{2}}\right)^{i}\left(\frac{t_{2} w_{2}}{\mu s_{2}}\right)^{-b+j}\left(-\frac{\mu t_{3}}{r_{3}}\right)^{-c+k} \frac{\left(z ; q^{2}\right)_{a}}{\left(q^{2} ; q^{2}\right)_{a}} q^{(a-b+j-1) c-(i-b+j-1) k-a j+b i} \\
& \times{ }_{2} \phi_{1}\left(\begin{array}{l}
q^{-2 i}, z^{-1} q^{2} \\
\left.z^{-1} q^{-2 a+2} ; q^{2}, y q^{2 i+2 j-2 a-2 b}\right) \\
x=\frac{\mu^{2} s_{2}}{r_{2} w_{2}}, \quad a, i \in \mathbb{Z}_{\geq 0}, b, c, j, k \in \mathbb{Z} \\
\end{array} \quad y=\frac{r_{3} w_{3}}{\mu^{2} s_{3}}, \quad z=x q^{2 k-2 c+2}\right.
\end{aligned}
$$

q-hypergeometric, instead of factorization.
Not locally finite.

$R^{00 Z}$

\exists unique solution iff $\frac{\mu_{1}}{\mu_{2}}=q^{d}$ for some $d \in \mathbb{Z}$.

$$
\begin{aligned}
R_{i, j, k}^{a, b, c} & =s_{3}^{i}\left(\mu_{2} t_{3}\right)^{-a}\left(\frac{\mu_{2} s_{3}}{t_{3} w_{3}}\right)^{j}\left(\frac{t_{3}^{2} w_{3}}{r_{3} s_{3}}\right)^{e} q^{c j-b k} \frac{\left(q^{2+2 e-2 j} ; q^{2}\right)_{j}\left(q^{2 a+2} ; q^{2}\right)_{i-a}}{\left(q^{2} ; q^{2}\right)_{f}\left(q^{2 a-2 e} ; q^{2}\right)_{e-a}} \\
e & =\frac{1}{2}(a-c+j+k+d), \quad f=\frac{1}{2}(b+c+i-k-d) . \quad a, b, i, j \in \mathbb{Z} \geq 0, c, k \in \mathbb{Z}
\end{aligned}
$$

Factorized. Locally finite.

R000

$$
\begin{gathered}
R^{O O O} \in \operatorname{End}\left(\underset{\uparrow}{F_{+}} \otimes \underset{\uparrow}{{\underset{\sim}{2}}^{F}} \underset{\mu_{1}}{\mu_{2}} \underset{\mu_{3}}{F_{+}}\right) \\
R_{i, j, k}^{a, b, c}=\delta_{i+j}^{a+b} \delta_{j+k}^{b+c}\left(\frac{\mu_{3}}{\mu_{2}}\right)^{i}\left(-\frac{\mu_{1}}{\mu_{3}}\right)^{b}\left(\frac{\mu_{2}}{\mu_{1}}\right)^{k} q^{i k+b(k-i+1)} \\
\times \frac{\left(q^{2} ; q^{2}\right)_{a+b}}{\left(q^{2} ; q^{2}\right)_{a}\left(q^{2} ; q^{2}\right)_{b}}{ }^{2} \phi_{1}\binom{q^{-2 b}, q^{-2 i}}{q^{-2 a-2 b} ; q^{2}, q^{-2 c}}
\end{gathered}
$$

$$
a, b, c, i, j, k \in \mathbb{Z}_{\geq 0}
$$

Locally finite.
For this 3d R, representation theoretical origin (quantized coordinate ring, PBW bases, \cdots) is known.

4. Conjecture on $\mathrm{RRRR}=\mathrm{RRRR}$

$$
\begin{aligned}
& R_{124} R_{135} R_{236} R_{456} \underline{L_{\alpha \beta 6} L_{\alpha \gamma 5} L_{\beta \gamma 4} L_{\alpha \delta 3} L_{\beta \delta 2} L_{\gamma \delta 1}} \\
& =R_{124} R_{135} R_{236} L_{\beta \gamma 4} L_{\alpha \gamma 5} L_{\alpha \beta 6} L_{\alpha \delta 3} L_{\beta \delta 2} L_{\gamma \delta 1} R_{456} \\
& =R_{124} R_{135} L_{\beta \gamma 4} \underline{L_{\alpha \gamma 5} L_{\beta \delta 2}} L_{\alpha \delta 3} \underline{L_{\alpha \beta 6} L_{\gamma \delta 1}} R_{236} R_{456} \\
& =R_{124} R_{135} L_{\beta \gamma 4} L_{\beta \delta 2} \underline{L_{\alpha \gamma 5} L_{\alpha \delta 3} L_{\gamma \delta 1} L_{\alpha \beta 6} R_{236} R_{456}} \\
& =R_{124} L_{\beta \gamma 4} L_{\beta \delta 2} L_{\gamma \delta 1} L_{\alpha \delta 3} L_{\alpha \gamma 5} L_{\alpha \beta 6} R_{135} R_{236} R_{456} \\
& =L_{\gamma \delta 1} L_{\beta \delta 2} L_{\beta \gamma 4} L_{\alpha \delta 3} L_{\alpha \gamma 5} L_{\alpha \beta 6} R_{124} R_{135} R_{236} R_{456}, \\
& =L_{\gamma \delta 1} L_{\beta \delta 2} L_{\alpha \delta 3} L_{\beta \gamma 4} L_{\alpha \gamma 5} L_{\alpha \beta 6} R_{124} R_{135} R_{236} R_{456},
\end{aligned}
$$

$$
\begin{aligned}
& R_{456} R_{236} R_{135} R_{124} L_{\alpha \beta 6} L_{\alpha \gamma 5} L_{\beta \gamma 4} L_{\alpha \delta 3} L_{\beta \delta 2} L_{\gamma \delta 1} \\
& =R_{456} R_{236} R_{135} R_{124} L_{\alpha \beta 6} L_{\alpha \gamma 5} L_{\alpha \delta 3} \underline{L_{\beta \gamma 4}} L_{\beta \delta 2} L_{\gamma \delta 1} \\
& =R_{456} R_{236} R_{135} L_{\alpha \beta 6} \underline{L_{\alpha \gamma 5} L_{\alpha \delta 3} L_{\gamma \delta 1} L_{\beta \delta 2} L_{\beta \gamma 4} R_{124}} \\
& =R_{456} R_{236} L_{\alpha \beta 6} L_{\gamma \delta 1} L_{\alpha \delta 3} L_{\alpha \gamma 5} L_{\beta \delta 2} L_{\beta \gamma 4} R_{135} R_{124} \\
& =R_{456} R_{236} L_{\gamma \delta 1} L_{\alpha \beta 6} L_{\alpha \delta 3} L_{\beta \delta 2} L_{\alpha \gamma 5} L_{\beta \gamma 4} R_{135} R_{124} \\
& =R_{456} L_{\gamma \delta 1} L_{\beta \delta 2} L_{\alpha \delta 3} L_{\alpha \beta 6} L_{\alpha \gamma 5} L_{\beta \gamma 4} R_{236} R_{135} R_{124} \\
& =L_{\gamma \delta 1} L_{\beta \delta 2} L_{\alpha \delta 3} L_{\beta \gamma 4} L_{\alpha \gamma 5} L_{\alpha \beta 6} R_{456} R_{236} R_{135} R_{124} .
\end{aligned}
$$

($\left.R_{124} R_{135} R_{236} R_{456}\right)^{-1} R_{456} R_{236} R_{135} R_{124}$ commutes with $L_{\alpha \beta 6} L_{\alpha \gamma 5} L_{\beta \gamma 4} L_{\alpha \delta 3} L_{\beta \delta 2} L_{\gamma \delta 1}$.
$\rightarrow R_{456} R_{236} R_{135} R_{124}=R_{124} R_{135} R_{236} R_{456}$ if irreducible.

In our case, a similar procedure starting from $L_{\alpha \beta 6}^{F} L_{\alpha \gamma 5}^{E} L_{\beta \gamma 4}^{D} L_{\alpha \delta 3}^{C} L_{\beta \delta 2}^{B} L_{\gamma \delta 1}^{A}$. suggests

$$
R_{456}^{D E F} R_{236}^{B C F} R_{135}^{A C E} R_{124}^{A B D}=R_{124}^{A B D} R_{135}^{A C E} R_{236}^{B C F} R_{456}^{D E F}
$$

where, A, B, C, D, E, F are Z or O or X.
For $A=\cdots=F=0$, the irreducibility is known from the representation theory of A_{q}. Therefore

$$
R_{456}^{O O O} R_{236}^{O O O} R_{135}^{O O O} R_{124}^{O O O}=R_{124}^{O O O} R_{135}^{O O O} R_{236}^{O O O} R_{456}^{O O O} \quad \text { holds. (Kapranov-Voevodsky ‘94) }
$$

Other cases are yet elusive, also due to convergence issue for composition of the locally non-finite 3D R's.
$|i\rangle \otimes|j\rangle \otimes|k\rangle \otimes|l\rangle \otimes|m\rangle \otimes|n\rangle \mapsto|a\rangle \otimes|b\rangle \otimes|c\rangle \otimes|d\rangle \otimes|e\rangle \otimes|f\rangle$ component of $R R R R=R R R R:$

$$
\sum_{u, v, w, x, y, z} R_{x, y, z}^{d, e, f} R_{v, w, n}^{b, c, z} R_{u, k, m}^{a, w, y} R_{i, j, l}^{u, v, x}=\sum_{u, v, w, x, y, z} R_{u, v, x}^{a, b, d} R_{i, w, y}^{u, c, e} R_{j, k, z}^{v, w, f} R_{l, m, n}^{x, y, z}
$$

We have listed up the cases (without X) in which the above sums with prescribed a,b,c,d,e,f, I, j,k,l,m,n become finite sums due to locally-finiteness. They are given in the next page.

$$
\begin{aligned}
& R_{456}^{O O O} R_{236}^{O O O} R_{135}^{Z O O} R_{124}^{Z O O}=R_{124}^{Z O O} R_{135}^{Z O O} R_{236}^{O O O} R_{456}^{O O O}, \\
& R_{456}^{Z O O} R_{236}^{O O O} R_{135}^{O O O} R_{124}^{O O Z}=R_{124}^{O O Z} R_{135}^{O O O} R_{236}^{O O O} R_{456}^{Z O O} \text {, } \\
& R_{456}^{O O Z} R_{236}^{O O Z} R_{135}^{O O O} R_{124}^{O O O}=R_{124}^{O O} R_{135}^{O O O} R_{236}^{O O Z} R_{456}^{O O Z} \text {, } \\
& R_{456}^{O O Z} R_{236}^{O O Z} R_{135}^{Z O O} R_{124}^{Z O O}=R_{124}^{Z O O} R_{135}^{Z O O} R_{236}^{O O Z} R_{456}^{O O Z} . \\
& R_{456}^{O O O} R_{236}^{Z O O} R_{135}^{O O O} R_{124}^{O Z O}=R_{124}^{O Z O} R_{135}^{O O O} R_{236}^{Z O O} R_{456}^{O O O}, \\
& R_{456}^{O Z O} R_{236}^{O O O} R_{135}^{O O Z} R_{124}^{O O O}=R_{124}^{O O O} R_{135}^{O O Z} R_{236}^{O O O} R_{456}^{O Z O}, \\
& R_{456}^{O O O} R_{236}^{Z O O} R_{135}^{Z O O} R_{124}^{Z Z O}=R_{124}^{Z Z O} R_{135}^{Z O O} R_{236}^{Z O O} R_{456}^{O O O}, \\
& R_{456}^{Z O O} R_{236}^{O O O} R_{135}^{Z O O} R_{124}^{Z O Z}=R_{124}^{Z O Z} R_{135}^{Z O O} R_{236}^{O O O} R_{456}^{Z O O}, \\
& R_{456}^{Z O O} R_{236}^{Z O O} R_{135}^{O O O} R_{124}^{O Z Z}=R_{124}^{O Z Z} R_{135}^{O O O} R_{236}^{Z O O} R_{456}^{Z O O} \text {, } \\
& R_{456}^{Z Z O} R_{236}^{O O O} R_{135}^{O O Z} R_{124}^{O O Z}=R_{124}^{O Z} R_{135}^{O O Z} R_{236}^{O O O} R_{456}^{Z Z O}, \\
& R_{456}^{Z O Z} R_{236}^{O Z} R_{135}^{O O O} R_{124}^{O Z}=R_{124}^{O Z} R_{135}^{O O O} R_{236}^{O O Z} R_{456}^{Z O Z}, \\
& R_{456}^{O Z Z} R_{236}^{O O Z} R_{135}^{O O Z} R_{124}^{O O O}=R_{124}^{O O O} R_{135}^{O O Z} R_{236}^{O O Z} R_{456}^{O Z Z}, \\
& R_{456}^{Z O O} R_{236}^{Z O O} R_{135}^{Z O O} R_{124}^{Z Z Z}=R_{124}^{Z Z Z} R_{135}^{Z O O} R_{236}^{Z O O} R_{456}^{Z O O}, \\
& R_{456}^{Z Z Z} R_{236}^{O O Z} R_{135}^{O O Z} R_{124}^{O O Z}=R_{124}^{O O Z} R_{135}^{O O Z} R_{236}^{O O Z} R_{456}^{Z Z Z} . \\
& R_{456}^{O O O} R_{236}^{O Z O} R_{135}^{O Z O} R_{124}^{O O}=R_{124}^{O O O} R_{135}^{O Z O} R_{236}^{O Z O} R_{456}^{O O O}, \\
& R_{456}^{O O O} R_{236}^{O Z O} R_{135}^{Z Z O} R_{124}^{Z O O}=R_{124}^{Z O O} R_{135}^{Z Z O} R_{236}^{O Z O} R_{456}^{O O O}, \\
& R_{456}^{O Z O} R_{236}^{O O O} R_{135}^{Z O Z} R_{124}^{Z O O}=R_{124}^{Z O O} R_{135}^{Z O Z} R_{236}^{O O O} R_{456}^{O Z O}, \\
& R_{456}^{O O} R_{236}^{Z Z O} R_{135}^{O Z O} R_{124}^{O Z O}=R_{124}^{O Z O} R_{135}^{O Z O} R_{236}^{Z Z O} R_{456}^{O O O}, \\
& R_{456}^{O O Z} R_{236}^{Z O Z} R_{135}^{O O O} R_{124}^{O Z O}=R_{124}^{O Z O} R_{135}^{O O O} R_{236}^{Z O Z} R_{456}^{O O Z}, \\
& R_{456}^{Z O O} R_{236}^{O Z O} R_{135}^{O Z O} R_{124}^{O O Z}=R_{124}^{O O Z} R_{135}^{O Z O} R_{236}^{O Z O} R_{456}^{Z O O} \text {, } \\
& R_{456}^{O Z O} R_{236}^{O Z O} R_{135}^{O Z Z} R_{124}^{O O}=R_{124}^{O O O} R_{135}^{O Z Z} R_{236}^{O Z O} R_{456}^{O Z O} \text {, } \\
& R_{456}^{O O Z} R_{236}^{O Z Z} R_{135}^{O Z O} R_{124}^{O O}=R_{124}^{O O O} R_{135}^{O Z O} R_{236}^{O Z Z} R_{456}^{O O Z} \text {, } \\
& R_{456}^{O Z O} R_{236}^{O Z O} R_{135}^{Z Z Z} R_{124}^{Z O O}=R_{124}^{Z O O} R_{135}^{Z Z Z} R_{236}^{O Z O} R_{456}^{O Z} \text {, } \\
& R_{456}^{O Z} R_{236}^{Z Z Z} R_{135}^{O Z O} R_{124}^{O Z O}=R_{124}^{O Z O} R_{135}^{O Z O} R_{236}^{Z Z Z} R_{456}^{O Z} .
\end{aligned}
$$

$$
\begin{aligned}
& R_{456}^{O O O} R_{236}^{O O O} R_{135}^{Z O O} R_{124}^{Z O O}=R_{124}^{Z O O} R_{135}^{Z O O} R_{236}^{O O O} R_{456}^{O O O}, \\
& R_{456}^{Z O O} R_{236}^{O O O} R_{135}^{O O O} R_{124}^{O O Z}=R_{124}^{O O Z} R_{135}^{O O O} R_{236}^{O O O} R_{456}^{Z O O}, \\
& R_{456}^{O O Z} R_{236}^{O O} R_{135}^{O O O} R_{124}^{O O O}=R_{124}^{O O O} R_{135}^{O O O} R_{236}^{O O Z} R_{456}^{O O Z}, \\
& R_{456}^{O O Z} R_{236}^{O Z} R_{135}^{Z O O} R_{124}^{Z O O}=R_{124}^{Z O O} R_{135}^{Z O O} R_{236}^{O O Z} R_{456}^{O O}, \\
& R_{456}^{O O O} R_{236}^{Z O O} R_{135}^{O O O} R_{124}^{O Z O}=R_{124}^{O Z O} R_{135}^{O O O} R_{236}^{Z O O} R_{456}^{O O O}, \\
& R_{456}^{O Z O} R_{236}^{O O O} R_{135}^{O O Z} R_{124}^{O O O}=R_{124}^{O O O} R_{135}^{O O Z} R_{236}^{O O O} R_{456}^{O Z O}, \\
& R_{456}^{O O O} R_{236}^{Z O O} R_{135}^{Z O O} R_{124}^{Z Z O}=R_{124}^{Z Z O} R_{135}^{Z O O} R_{236}^{Z O O} R_{456}^{O O O}, \\
& R_{456}^{Z O O} R_{236}^{O O O} R_{135}^{Z O O} R_{124}^{Z O Z}=R_{124}^{Z O Z} R_{135}^{Z O O} R_{236}^{O O O} R_{456}^{Z O O}, \\
& R_{456}^{Z O O} R_{236}^{Z O O} R_{135}^{O O O} R_{124}^{O Z Z}=R_{124}^{O Z Z} R_{155}^{O O O} R_{236}^{Z O O} R_{456}^{Z O O}, \\
& R_{456}^{Z Z O} R_{236}^{O O O} R_{135}^{O O Z} R_{124}^{O O Z}=R_{124}^{O O Z} R_{135}^{O O Z} R_{236}^{O O O} R_{456}^{Z Z O}, \\
& R_{456}^{Z O Z} R_{236}^{O O Z} R_{135}^{O O O} R_{124}^{O O Z}=R_{124}^{O O Z} R_{155}^{O O O} R_{236}^{O O Z} R_{456}^{Z O Z}, \\
& R_{456}^{O Z Z} R_{236}^{O O Z} R_{135}^{O O Z} R_{124}^{O O O}=R_{124}^{O O O} R_{135}^{O O Z} R_{236}^{O O Z} R_{456}^{O Z Z}, \\
& R_{456}^{Z O O} R_{236}^{Z O O} R_{135}^{Z O O} R_{124}^{Z Z Z}=R_{124}^{Z Z Z} R_{135}^{Z O O} R_{236}^{Z O O} R_{456}^{Z O O}, \\
& R_{456}^{Z Z Z} R_{236}^{O O Z} R_{135}^{O O Z} R_{124}^{O O Z}=R_{124}^{O O Z} R_{135}^{O O Z} R_{236}^{O O Z} R_{456}^{Z Z Z} .
\end{aligned}
$$

$R_{456}^{O O O} R_{236}^{O Z O} R_{135}^{O Z O} R_{124}^{O O}=R_{124}^{O O O} R_{135}^{O Z O} R_{236}^{O Z O} R_{456}^{O O O}$,
$R_{456}^{O O O} R_{236}^{O Z O} R_{135}^{Z Z O} R_{124}^{Z O O}=R_{124}^{Z O O} R_{135}^{Z Z O} R_{236}^{O Z O} R_{456}^{O O O}$,
$R_{456}^{O Z O} R_{236}^{O O O} R_{135}^{Z O Z} R_{124}^{Z O O}=R_{124}^{Z O O} R_{135}^{Z O Z} R_{236}^{O O O} R_{456}^{O Z O}$,
$R_{456}^{O O O} R_{236}^{Z Z O} R_{135}^{O Z O} R_{124}^{O Z O}=R_{124}^{O Z O} R_{135}^{O Z O} R_{236}^{Z Z O} R_{456}^{O O O}$,
$R_{456}^{O O Z} R_{236}^{Z O Z} R_{135}^{O O O} R_{124}^{O Z O}=R_{124}^{O Z O} R_{135}^{O O O} R_{236}^{Z O Z} R_{456}^{O O Z}$,
$R_{456}^{Z O O} R_{236}^{O Z O} R_{135}^{O Z O} R_{124}^{O O Z}=R_{124}^{O O Z} R_{135}^{O Z O} R_{236}^{O Z O} R_{456}^{Z O O}$,
$R_{456}^{O Z O} R_{236}^{O Z O} R_{135}^{O Z Z} R_{124}^{O O}=R_{124}^{O O} R_{135}^{O Z Z} R_{236}^{O Z O} R_{456}^{O Z O}$,
$R_{456}^{O O Z} R_{236}^{O Z Z} R_{135}^{O Z O} R_{124}^{O O}=R_{124}^{O O} R_{135}^{O Z O} R_{236}^{O Z Z} R_{456}^{O O Z}$,
$R_{456}^{O Z O} R_{236}^{O Z O} R_{135}^{Z Z Z} R_{124}^{Z O O}=R_{124}^{Z O O} R_{135}^{Z Z Z} R_{236}^{O Z O} R_{456}^{O Z}$,
$R_{456}^{O O Z} R_{236}^{Z Z Z} R_{135}^{O Z O} R_{124}^{O Z O}=R_{124}^{O Z O} R_{135}^{O Z O} R_{236}^{Z Z Z} R_{456}^{O Z}$.

Conjecture (based on computer experiments)

They are all valid.

Outlook

quantization
YBE \rightleftarrows QYBE
Reduction via 3D
generates infinite family of quantum R matrices.
$q^{N}=1$: Local states can be confined to \mathbb{Z}_{N} under $a^{N}+b^{N}=c^{N}$ type constraints on parameters.

Conjecture (supported by numerics)
$R R R R=R R R R$ is valid for $R=R^{Z Z Z}$.

Any relation to the generalized Chiral Potts model which is connected to $R=R^{X X X}$?

