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n-species Totally Asymmetric Simple Exclusion Process (n-TASEP)

1D periodic chain with L sites
o; €4{0,1,...,n} (n-TASEP)

Stochastic dynamics

oL Oij
oL ... g; O (oi,0iv1) — (0}, 0741)

(a,8) — (B,a) ifa>p

Master equation

d
ZIPY = HIP), |P) = P(os,...,01)lon,...,00) € (C")%*

ii+1
H:Z hiivi, hiir1=1®---Q1l® h 1®---®1
IEZL
h|05 B)Z |B,a)—|a,ﬂ) (Q>B),
’ 0 (a < B).




Stationary states

Sectors labeled by multiplicities m = (mg,..., m,) € Zfl:
S(m) = {o =(01,...,0.) € {0,...,n} | #x(o) = my}.

Each sector has a unique stationary state

[P(m)) € ) Zi|o) s.it. H|P(m)) =

ocS(m)

|P(1,1,1)) = 2|012) + [021) + [102) + 2]|120) + 2|201) + |210),
|P(2,1,1)) = 3]0012) + [0021) + 2|0102) + 3|0120) + 2|0201) + |0210)
+11002) + 2|1020) + 3|1200) + 3]2001) + 2|2010) + |2100),
|P(1,2,1)) = 2|0112) + |0121) + |0211) + |1012) + |1021) + |1102)
+ 2|1120) + 2|1201) + |1210) + 2|2011) + |2101) + |2110).

Steady states are non-trivial for n > 2.



Results on stationary probability P(o)

P(m))= ) P(o)lo)

ocS(m)

Combinatorial algorithm: Ferrari-Martin (2007)
Matrix product formulas: Evans, Ferrari, Mallick, Prolhac,...(2009-)



Results on stationary probability P(o)

P(m))= ) P(o)lo)

ocS(m)

Combinatorial algorithm: Ferrari-Martin (2007)
Matrix product formulas: Evans, Ferrari, Mallick, Prolhac,...(2009-)

Today’s topic : Quantum group symmetry and hidden 3D structure

Ferrari-Martin algorithm = composition of Combinatorial R
New matrix prod. operators = corner transfer mat. of q=0 boson-valued 5V model
P(o) = Partition function of a 3D model associated with Tetrahedron equation



Ferrari-Martin algorithm

Sector S(m) with multiplicity m = (mo, ..., m,) with Vm; > 0

B(m):: B ® -+ ® B® --- setofstates for n-line process

B°:={b=(by,...,b) €{0,1} | by + --- + b, = s},

e.g. B' ={100,010,001}, B? = {110,101,011} for L =3

Si::mn—i+1+"'+mn—1+mn, 0<51<"'<Sn<L



Ferrari-Martin algorithm

Sector S(m) with multiplicity m = (mo, ..., m,) with Vm; > 0

B(m):: B ® ---® B® --- setofstates for n-line process

B*:={b=(by,...,b) € {0,1}" | b1 + - + b = s},

e.g. B' ={100,010,001}, B? = {110,101,011} for L =3

Si::mn—i+1+"'+mn—1+mn, O<S]_<"'<Sn<L

Elements of B(m) are depicted as dot patterns
Example. n=3, m=(2,1,2,2), bj®by®bs € B(m) = B> ® B*® B>

L=7

B® 5 bz =
B49b2=
B%2 5 b; =

o |o b; = (0010100), etc.




Ferrari-Martin gave a combinatorial construction of the surjective map
m: B(m) — S(m) such that P(o) = #(7 (o).

Uniform measure on B(m) induces n-TASEP stationary measure via T
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Ferrari-Martin gave a combinatorial construction of the surjective map
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Uniform measure on B(m) induces n-TASEP stationary measure via T

3 3
® o 6 ® O
° |0 2| |o | > 0313022
s| |o a

n-line process n-TASEP



Ferrari-Martin gave a combinatorial construction of the surjective map
m: B(m) — S(m) such that P(o) = #(7 (o).

Uniform measure on B(m) induces n-TASEP stationary measure via T
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Ferrari-Martin gave a combinatorial construction of the surjective map
m: B(m) — S(m) such that P(o) = #(7 (o).

Uniform measure on B(m) induces n-TASEP stationary measure via T

0 3 1 .3 0 2 2
o o0 o o—-L
-9 [0 ? Lo | > 0313022
s| |o T

n-line process n-TASEP
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Ferrari-Martin gave a combinatorial construction of the surjective map
m: B(m) — S(m) such that P(o) = # (7 '(o)).

Uniform measure on B(m) induces n-TASEP stationary measure via T

[O 3 1 3 0 2 2] = Image by 1

LN BN ’ .——I—
o 2| o L. | > 0313022

o 7T

n-line process n-TASEP

Pairing of dots in adjacent rows is referred to as a queuing process
of customers and service.

7T is most naturally formulated by Combinatorial R of
the quantum affine algebra Ug(sl,)
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Quantum R matrix for Uy(sl,)

Degree s anti-symmetric tensor representation:

Ve=EPClb), B ={(x,...,x) €{0,1} [ xg + - +x = s}
LR Length s column shape standard tableaux
Quantum R matrix: R(z) =R5"(z2): V°Q V"' > V' ® V*

R(z) (i) ® i) = Y _R(2)°|b) ® [a) (a=(a,...,aL) € B, etc).

a,b

3 Normalization s.t. IR(z)ia,Jib = polynomials in g and z.

Example. Nonzero elements of R12(z) for Uq(;I3) are as follows.

100,110 _ 4,010,110 _ 100,101 _ 4,001,101 _ 010,011 _ 001,011 3
R100'110 = Ro10.110 = R100'101 = Roo1'101 = Ro10/011 = Rooro11 = 1 + G2,
001,110 _ 010,101 _ 100,011
Roo1'110 = Ro10101 = Rioolo11 = 9(1 + q2),
001,110 _ 010,101 _ _ 100,011 2
fR01o,101 = leoo,ou = ij001,110 = —q(1 - q%)z,

001,110 _ _.,010,101 _ _p,100,011 2
32100,011 = 292001,110 = ZfRom,lm =(1-q%)z



Matrix product (BBQ stick) formula for the Quantum R

fR(z):ajb - Q(Z)Tl‘(zh,ﬂ?l’.bl o ,C‘?L’-b")

nJ1 ILJL

him) = m/m), a=(a1,...,aL) € B®, etc, o(z) =known.

L= (P ab.i.i=0.1 = 3D L-operator (defined in the next page
] y2,1,J )

= operator on the Fock space
F = ®n»C|m) (blue arrow) = BBQ stick with X shape sausages



3D L-operator (g-boson valued 6V model)

b
L= (L3) € End(C?®C?® F), L0 = | %—*a € End(F)
J
0 1 1 0 1 0
0—}~0 1{—»1 1-+-0 011 o{—»o 11
0 1 0 1 1 0
1 1 at a k gk

a®T,a ",k are g-boson operators on the Fock space F = D,,~o Clm)

at|m)=|m+1), a7|m)=(1-¢*")im-1), kim)=(-q)"|m)



3D L-operator (g-boson valued 6V model)

b
L= (L3) € End(C?®C?® F), L37 = iﬂ‘*a € End(F)
J
0 1 1 0 1 0
o-F-0 1-t+1 1-t0 o1 o-f0 111
0 1 0 1 1 0
1 1 at a k gk

a®T,a ",k are g-boson operators on the Fock space F = D,,~o Clm)

at|m)=|m+1), a7|m)=(1-¢*")im-1), kim)=(-q)"|m)

Origin of g-boson valued L-operator
Quantized coordinate ring Aq(sl3) [Kapranov-Voevodsky, 1994]
Quantization of Miquel’s theorem [Bazhanov-Mangazeev-Sergeev, 2008]



g=0: Combinatorial R

Quantum R: R(z): V@V - V'@V, V=P Chb),

001) ®|110)
— q(1+¢z)|110)®|001) + (1—g?)|101)®|010) — q(1—q?)[011)®|100)



g=0: Combinatorial R

Quantum R:  R(z): V@V - V'@V, V=P Chb),

001)®|110)
— q(1+¢2)[110)®001) + (1—q?)|101)®|010) — g(1—g¢?)|011)®|100)

[ Combinatorial R: R :=R(z =1)|,=0 ]

(A more intrinsic definition exists, but this suffices for this talk.)

In the above example, R: |001)®|110) — |101)®|010)



g=0: Combinatorial R

Quantum R:  R(z): V@V - V'@V, V=P Chb),

001)®|110)
— q(1+¢2)[110)®001) + (1—q?)|101)®|010) — g(1—g¢?)|011)®|100)

[ Combinatorial R: R :=R(z =1)|,=0 ]

(A more intrinsic definition exists, but this suffices for this talk.)

In the above example, R: |001)®|110) — |101)®|010)

Fact (from general theory of crystal base by [Kashiwara, 1991-])

Combinatorial R is a bijection B" ® B° — B° ® B" satisfying YBE.




Depict R(i®j)=b®a as i+a

]
Nontrivial in that b® a # j® i in general.



Depict R(i®j)=b®a as i+a

]
Nontrivial in that b® a # j® i in general.

Example of YBE: B'®B’°®B° — B3®B?®B!

0111 1100 0001 0111 1100 0001
f f <

0110 1101 0001 0111 1000 0101
bt > = XX T

0110 0001 1101 0100 1011 0101
> t X<

0100 0011 1101 0100 00i1 1101

Combinatorial R: systematic examples of set-theoretical sol. of YBE.



The algorithm for finding the image of the combinatorial R

R:B°®B"—- B"® B°®
i) — b®a

is known as the Nakayashiki-Yamada (NY) rule (1997).



The algorithm for finding the image of the combinatorial R

R:B°®B"— B"® B®
iI®j — b®a

is known as the Nakayashiki-Yamada (NY) rule (1997).

Example. B* ® B° B* ® B*
1100100100 ® 0010111110 > 1110110100 ® 0000101110
i i b a
(i) (ii) (iii)
j=[1Te[ Je[e[e[e[e] ] [ [o [e[e[e[e[e[ ] [ [ [ [ [e] [e[e[e[ |=a
i=(®e [ [o [ [o[ ] [O[e [ (o [[® []|] [eee [e[e o |=Db

NY-rule = queuing process in the Ferrari-Martin algorithm!



Ferrari-Martin map 7T as ~ Corner transfer matrix (CTM)”

m(b1®ba®b3) =0 3 1 3 0 2 2

b3 = LALIK (AN &
b2 ..l @ ‘ ? ? -|—
b; = o |0

o 0313022

Elementary gelabelmg of n-TAS.EP o by 21@) [ 0101000
ok(o) € B (k =1,...,n) defined as ox(o) | 0101011
ps(6) | 0111011




Ferrari-Martin map 7T as ~ Corner transfer matrix (CTM)”

m(b1®b2®b3) =03 13 0 2 2 by | F 0101000
I-')3 — LALIK K =
by —..le ¢ o the 1 b 0101011
by = of [o bs — 0111011
Elementary relabeling of n-TASEP o by g 0313022
s : p1() | 0101000
ok(o) € B% (k =1,...,n) defined as oo(o) | 0101011
e3(6) | 0111011




Ferrari-Martin map 7T as ~ Corner transfer matrix (CTM)”

m(b1®ba®b3) =0 3 1 3 0 2 2 b+t t0101000
b3 — o o 0 oo
by —..le 6 ol tre|l... b2 0101011
b = o| |o bs — 0111011

o 0313022
oi() | 0101000

Elementary relabeling of n-TASEP o by

ok(o) € B% (k =1,...,n) defined as o(o) | 0101011
p3(o) | 0111011

Hlo) = 2 b, p2(0)

b; ®b,®b3EB(m)




To each vertex here (= Combinatorial R)
we are to substitute the BBQ stick formula at q=0.

by

b . 5 ..____i.L>I<aL)q=O

JL

a2

=

ai j2
J

Each Layer forms a configuration of

q—>0
[q—boson valued 6V model } > [ q=0-boson valued 5V model }
0 1 1 0 1
o4-0 1-+1 1o o1 0o
0 1 0 1 1
1 1 a’ a k



Result: P(o) = Trres(Xo, - X5,) (n = 3 case)

where X;'s are CTMs of the 5V-model with the boundary conditions:

A A +0 A A +0 A A *0 A A +1
Xo=) . X1=) . Xo=2. 11, X3=x. 11,
-0 -1 -1 -1
Example.
A A * A A + A A * L A + A A *
Xo = + + + +
= 1_®1®1 + a+_®1®1 + kéa+®1 +a  ®at®at + 1Qat®a"
A A * 'y + A A *
X1 = + + I T
0 1

= k®k®l + a Qk®at+ 1Qk®at



Theorem (Matrix product formula for stationary prob. of n-TASEP)

P(o) = Trrene-1/2 (Xo, + +* Xo,)
Xo, ..., Xn are CTMs of (g = 0)-boson valued 5 vertex model:

A A A...A A *
0

0 n(n—
Xi=> - oy/n—i € End(Fen("=D/2)

1

1"
1 A
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A

A
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0 n(n—
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1
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1 A

e X; = Layer transfer matrix with [ shape

o P(o) = Partition function of a 3D system with prism shape



Theorem (Matrix product formula for stationary prob. of n-TASEP)

P(o) = Trrene-1/2 (Xo, + +* Xo,)
Xo, ..., Xn are CTMs of (g = 0)-boson valued 5 vertex model:

A A A...A

A +0

0 nl(n—
Xi=>_ - oy/n—i € End(F®n(n=1/2)

1

1"
1 A

e X; = Layer transfer matrix with [ shape

o P(o) = Partition function of a 3D system with prism shape

initial setup | cross channel (we are here!)
Physical space Z; ring sizen |/
Internal degree | {0,...,n} Uqg(slL) at g =0
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Local form of stationarity

If the operators X = (Xa)o<a<n, X = (Xa)o<a<n satisfy
hat relation: h(X @ X)=X®X — X ® X (h: local Markov matrix),
stationary states under P.B.C. is Tr(X X .... X) due to the cancellation
HTr(XX --- X) = Tr ((X)?—)%X)xx---x)

+T&~(X(X)"<—)”<X)X---X)+---=o



Local form of stationarity

If the operators X = (Xa)o<a<n, X = (Xa)o<a<n satisfy
hat relation: h(X ® X) =X ® X - X ® X (h:local Markov matrix),
stationary states under P.B.C. is Tr(X X .... X) due to the cancellation
HTe(XX - - X) = Tr (XX — RX)XX -+ X)
+Tr (X(XX = X)X+ X) 4= =0

The hat relation is an infinitesimal version of
the Zamolodchikov-Faddeev (ZF) algebra

5(x/y) (X(x) ® X(y)) = X(y) ® X(x)
with spectral parameters x, y via the correspondence
h=S'(1), X=X1), X=X(1)

( S(z) =a stochastic R matrix at q=0 given in the next page effectively.)



In our n-TASEP, X(z) =(X,(z),...,X,(z)) and the ZF relation are given by

0
;'/
— 1 I

[ xXXi(y)Xi(x)=yXi(x)X;(y) (i >Jj), [Xi(x), X;(y)]=[Xi(y), X;(x)] (Vi,)) }

highly non-local
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Layer transfer matrices and their bilinear relations (g-melting)



In our n-TASEP, X(z) =(X,(z),...,X,(z)) and the ZF relation are given by

0
Xi(z) = Zza1+m+a" : 07'/r;—i
e
—1 ]

[ XXi(y)Xi(x)=yXi(x)X;(y) (i >Jj), [Xi(x), X;(y)]=[Xi(y), Xj(x)] (Vi,j)}

highly non-local Strategy

[q—>0

Layer transfer matrices and their bilinear relations (g-melting)

!

Tetrahedron equation (Single local relation)



g-Melting: 5V — 6V and Corner — Square Layer

Introduce the 3D L-operator £(z) involving g, z by

0 1 1 0 1 0
% - 0+-0 1-F1 140 o1 ot-0 1}

0 1 0 1 1 0

1 1 z tat za~ k gk
,/-- - g-boson Fock space F t ! back for =0

attach spectral parameter



g-Melting: 5V — 6V and Corner — Square Layer

Introduce the 3D L-operator £(z) involving g, z by

0 1 1 0 1 0
% - 0+-0 1-F1 140 o1 ot-0 1}

0 1 0 1 1 0

1 1 z tat za~ k gk
,/-- - g-boson Fock space F t ! back for =0

attach spectral parameter

Define Layer transfer matrix T(z){ € End(F®™) as

A A A

7%%4> a1 NW-free/SE-ﬁxeo{ bou.ndary.condltlon
a __ — _
T(Z)J o 7%%4> ar a (31, T ’an)’ J (.’1’ s 7J")

All vertices are £(z)

Sum over all black edge spins except a, j



Bilinear relations of Layer transfer matrices T(z)J?

Example. (--- is a common sequence for T(x) and T(y))
(1) T T(y)i = Ty)i T(x)j Commutativity
(2) Y2 T()o T+ T T
xyT(x)o - T+ T T()eo = (x > y)

Fact: The ZF relations are included (!) in (1) and (2) at q=0.



Bilinear relations of Layer transfer matrices T(z)J?

Example. (--- is a common sequence for T(x) and T(y))
(1) T T(y)i = Ty)i T(x)j Commutativity
(2) Y2 T()o T+ T T
xyT(x)o - T+ T T()eo = (x > y)

Fact: The ZF relations are included (!) in (1) and (2) at q=0.

(1) and (2) are r=s=0 and r=s=1 special cases of

Prop. General bilinear relations of the layer transfer matrices

3 xlalHBl  Jal+B () -1

@ Sum over a = (ayg,...,,) € {0,1}", B =(B,...,Bs) € {0,1}".

’asr” T(y) ,g]]-., ’gsr”'.'. - (x H y).

@ 0<r<n, 0<s<n are arbitrary, a;=1—-«q;, || =01 + -+ a,, etc.

@ Arrays “...." are arbitrary, but to be taken common for T(x) and T(y).



Proof of the bilinear relations of T(z);

Introduce a variant of the 3D L-operator: M(z) := £(z)|q— 4.

Lz) = B Mz = P



Proof of the bilinear relations of T(z);

Introduce a variant of the 3D L-operator: M(z) := £(z)|q— 4.

Liz)= B Mz =

Theorem (£(z) and M(z) satisfy the tetrahedron equation)

M(5)126M ()46 £(x)135L(y )245 = L(y)245L(x)135M ()36 M (5 ) 126

6\/ 26 S

Equality of linear operatorson (2 C? C?C? R F® F
Originally introduced as a 3D analogue of YBE [Zamolodchikov 1980].



L 6
Repeated application of 5 1) X ond
the tetrahedron eq. AT = eads to
3

Cq C , : , :
" -/ €y 4 ... Gy 4
/ b/ ?/1 kl A B A . . al
by .1. bn " - >k<_ / /
1

) A (3]

Zil./ /'/a)<' Zz'/:

ai
1 a -
- N . Um a ~ . j
m m b . .
7; /I X j1 jl ]n n
m I A I am Am

g It g, I jit it

The bilinear relations are proved by evaluating this identity between
various left/right eigenvectors of M(*) running along the green arrow.

QED



Remarks

Quite a parallel story in the cross channel holds also for a class of
n-species Totally Asymmetric Zero Range Process (n-TAZRP) , where
smaller species particles have the priority to hop to the left neighbor site.

n=3 example Species 1 2 3
@ O o

@0 L[]
{\ / 08, S, allowed

([ ]
\ 0 .
L0 4,0 o, forbidden

Yang-Baxter: R matrix for R matrix for
anti-symm. tensor rep. symm. tensor rep.
Tetrahedron: 3D L-operator 3D R-operator
Markov process: n-TASEP n-TAZRP
(today’s talk) [J. Integrable Sys. 2016]
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A natural g-version of these models in the direct channel are formulated in terms
of Stochastic R matrices for Uq(A(l)n). [K-Mangazeev-Maruyama-Okado 2016].



