Aspects of stationary states in multispecies exclusion and zero range processes

Atsuo Kuniba (Univ. Tokyo)

Integrable Probability Boston 2018 MIT, Cambridge, MA, USA

14 May 2018

Contents.

- I. n-TASEP and stationary states
- II. Quantum group formulation of stationary probability
- III. Hidden 3D structure related to tetrahedron equation
- IV. Remarks

This talk is a survey of the combinatorial aspects of the simple exclusion / zero range processes that become manifest in **multispecies** setting.

Based on joint works with V.V. Mangazeev, M. Okado, S. Maruyama, S. Watanabe in arXiv: 1506.04490, 1509.09018, 1511.09168, 1602.00764, 1602.04574, 1604.08304, 1608.02779, 1610.00531, 1701.07279, 1705.10979.

Contents.

- I. n-TASEP and stationary states master equation, n-line process, Ferrari-Martin algorithm
- II. Quantum group formulation of stationary probability
- III. Hidden 3D structure related to tetrahedron equation
- IV. Remarks

This talk is a survey of the combinatorial aspects of the simple exclusion / zero range processes that become manifest in **multispecies** setting.

Based on joint works with V.V. Mangazeev, M. Okado, S. Maruyama, S. Watanabe in arXiv: 1506.04490, 1509.09018, 1511.09168, 1602.00764, 1602.04574, 1604.08304, 1608.02779, 1610.00531, 1701.07279, 1705.10979.

n-species Totally Asymmetric Simple Exclusion Process (n-TASEP)

1D periodic chain with *L* sites $\sigma_i \in \{0, 1, ..., n\}$ (*n*-TASEP) Stochastic dynamics $(\sigma_i, \sigma_{i+1}) \rightarrow (\sigma'_i, \sigma'_{i+1})$ $(\alpha, \beta) \rightarrow (\beta, \alpha)$ if $\alpha > \beta$

Master equation

$$\begin{split} \frac{d}{dt}|P\rangle &= H|P\rangle, \quad |P\rangle = \sum_{\{\sigma_i\}} \mathbb{P}(\sigma_1, \dots, \sigma_L) |\sigma_1, \dots, \sigma_L\rangle \in (\mathbb{C}^{n+1})^{\otimes L} \\ H &= \sum_{i \in \mathbb{Z}_L} h_{i,i+1}, \quad h_{i,i+1} = 1 \otimes \dots \otimes 1 \otimes \stackrel{i,i+1}{h} \otimes 1 \otimes \dots \otimes 1 \\ h|\alpha, \beta\rangle &= \begin{cases} |\beta, \alpha\rangle - |\alpha, \beta\rangle & (\alpha > \beta), \\ 0 & (\alpha \le \beta). \end{cases} \end{split}$$

Sectors labeled by multiplicities $\mathbf{m} = (m_0, \ldots, m_n) \in \mathbb{Z}_+^{n+1}$:

$$S(\mathbf{m}) = \{ \boldsymbol{\sigma} = (\sigma_1, \ldots, \sigma_L) \in \{0, \ldots, n\}^L \mid \#_k(\boldsymbol{\sigma}) = m_k \}.$$

Each sector has a unique stationary state

$$|ar{P}(\mathbf{m})
angle\in\sum_{oldsymbol{\sigma}\in S(\mathbf{m})}\mathbb{Z}_+|oldsymbol{\sigma}
angle$$
 s.t. $H|ar{P}(\mathbf{m})
angle=0.$

$$\begin{split} |\bar{P}(1,1,1)\rangle &= 2|012\rangle + |021\rangle + |102\rangle + 2|120\rangle + 2|201\rangle + |210\rangle, \\ |\bar{P}(2,1,1)\rangle &= 3|0012\rangle + |0021\rangle + 2|0102\rangle + 3|0120\rangle + 2|0201\rangle + |0210\rangle \\ &+ |1002\rangle + 2|1020\rangle + 3|1200\rangle + 3|2001\rangle + 2|2010\rangle + |2100\rangle, \\ |\bar{P}(1,2,1)\rangle &= 2|0112\rangle + |0121\rangle + |0211\rangle + |1012\rangle + |1021\rangle + |1102\rangle \\ &+ 2|1120\rangle + 2|1201\rangle + |1210\rangle + 2|2011\rangle + |2101\rangle + |2110\rangle. \end{split}$$

Steady states are non-trivial for $n \ge 2$.

Results on stationary probability $\mathbb{P}(\sigma)$

$$|ar{P}(\mathsf{m})
angle = \sum_{oldsymbol{\sigma}\in S(\mathsf{m})} \mathbb{P}(oldsymbol{\sigma}) |oldsymbol{\sigma}
angle$$

Combinatorial algorithm: Ferrari-Martin (2007) Matrix product formulas: Evans, Ferrari, Mallick, Prolhac,...(2009-)

Results on stationary probability $\mathbb{P}(\sigma)$

$$|ar{P}(\mathsf{m})
angle = \sum_{oldsymbol{\sigma}\in S(\mathsf{m})} \mathbb{P}(oldsymbol{\sigma}) |oldsymbol{\sigma}
angle$$

Combinatorial algorithm: Ferrari-Martin (2007) Matrix product formulas: Evans, Ferrari, Mallick, Prolhac,...(2009-)

Today's topic : Quantum group symmetry and hidden 3D structure

Ferrari-Martin algorithm = composition of Combinatorial R New matrix prod. operators = corner transfer mat. of q=0 boson-valued 5V model $\mathbb{P}(\sigma)$ = Partition function of a 3D model associated with Tetrahedron equation Ferrari-Martin algorithm

Sector $S(\mathbf{m})$ with multiplicity $\mathbf{m} = (m_0, \ldots, m_n)$ with $\forall m_i > 0$

 $\mathcal{B}(\mathbf{m}) := B^{s_1} \otimes \cdots \otimes B^{s_n} \cdots$ Set of states for *n-line process*

$$B^{s} := \{ \mathbf{b} = (b_{1}, \dots, b_{L}) \in \{0, 1\}^{L} \mid b_{1} + \dots + b_{L} = s \},$$

e.g. $B^{1} = \{100, 010, 001\}, B^{2} = \{110, 101, 011\}$ for $L = 3$
 $s_{i} := m_{n-i+1} + \dots + m_{n-1} + m_{n}, 0 < s_{1} < \dots < s_{n} < L$

Ferrari-Martin algorithm

Sector $S(\mathbf{m})$ with multiplicity $\mathbf{m} = (m_0, \ldots, m_n)$ with $\forall m_i > 0$

 $\mathcal{B}(\mathbf{m}) := B^{s_1} \otimes \cdots \otimes B^{s_n} \cdots$ Set of states for *n-line process*

$$B^{s} := \{ \mathbf{b} = (b_{1}, \dots, b_{L}) \in \{0, 1\}^{L} \mid b_{1} + \dots + b_{L} = s \},$$

e.g. $B^{1} = \{100, 010, 001\}, B^{2} = \{110, 101, 011\}$ for $L = 3$
 $s_{i} := m_{n-i+1} + \dots + m_{n-1} + m_{n}, 0 < s_{1} < \dots < s_{n} < L$

Elements of $\mathcal{B}(\mathbf{m})$ are depicted as **dot patterns Example.** n = 3, $\mathbf{m} = (2, 1, 2, 2)$, $\mathbf{b_1} \otimes \mathbf{b_2} \otimes \mathbf{b_3} \in \mathcal{B}(\mathbf{m}) = B^2 \otimes B^4 \otimes B^5$ L = 7

 $\mathbf{b_1} = (0010100)$, etc.

 $\pi: \mathcal{B}(\mathbf{m}) \to S(\mathbf{m})$ such that $\mathbb{P}(\boldsymbol{\sigma}) = \#(\pi^{-1}(\boldsymbol{\sigma})).$

Uniform measure on $\mathcal{B}(\mathbf{m})$ induces n-TASEP stationary measure via π

 $\pi: \mathcal{B}(\mathbf{m}) \to S(\mathbf{m})$ such that $\mathbb{P}(\boldsymbol{\sigma}) = \#(\pi^{-1}(\boldsymbol{\sigma})).$

Uniform measure on $\mathcal{B}(\mathbf{m})$ induces n-TASEP stationary measure via π

n-line process

n-TASEP

 $\pi: \mathcal{B}(\mathbf{m}) \to S(\mathbf{m})$ such that $\mathbb{P}(\boldsymbol{\sigma}) = \#(\pi^{-1}(\boldsymbol{\sigma})).$

Uniform measure on $\mathcal{B}(\mathbf{m})$ induces n-TASEP stationary measure via π

n-line process

n-TASEP

 $\pi: \mathcal{B}(\mathbf{m}) \to S(\mathbf{m})$ such that $\mathbb{P}(\boldsymbol{\sigma}) = \#(\pi^{-1}(\boldsymbol{\sigma})).$

Uniform measure on $\mathcal{B}(\mathbf{m})$ induces n-TASEP stationary measure via π

n-line process

n-TASEP

 $\pi: \mathcal{B}(\mathbf{m}) \to S(\mathbf{m})$ such that $\mathbb{P}(\boldsymbol{\sigma}) = \#(\pi^{-1}(\boldsymbol{\sigma})).$

Uniform measure on $\mathcal{B}(\mathbf{m})$ induces n-TASEP stationary measure via π

 $\pi: \mathcal{B}(\mathbf{m}) \to S(\mathbf{m})$ such that $\mathbb{P}(\boldsymbol{\sigma}) = \#(\pi^{-1}(\boldsymbol{\sigma})).$

Uniform measure on $\mathcal{B}(\mathbf{m})$ induces n-TASEP stationary measure via π

 $\pi: \mathcal{B}(\mathbf{m}) \to S(\mathbf{m})$ such that $\mathbb{P}(\boldsymbol{\sigma}) = \#(\pi^{-1}(\boldsymbol{\sigma})).$

Uniform measure on $\mathcal{B}(\mathbf{m})$ induces n-TASEP stationary measure via π

 $\pi: \mathcal{B}(\mathbf{m}) \to S(\mathbf{m})$ such that $\mathbb{P}(\boldsymbol{\sigma}) = \#(\pi^{-1}(\boldsymbol{\sigma})).$

Uniform measure on $\mathcal{B}(\mathbf{m})$ induces n-TASEP stationary measure via π

 $\pi: \mathcal{B}(\mathbf{m}) \to S(\mathbf{m})$ such that $\mathbb{P}(\boldsymbol{\sigma}) = \#(\pi^{-1}(\boldsymbol{\sigma})).$

Uniform measure on $\mathcal{B}(\mathbf{m})$ induces n-TASEP stationary measure via π

 $\pi: \mathcal{B}(\mathbf{m}) \to S(\mathbf{m})$ such that $\mathbb{P}(\boldsymbol{\sigma}) = \#(\pi^{-1}(\boldsymbol{\sigma})).$

Uniform measure on $\mathcal{B}(\mathbf{m})$ induces n-TASEP stationary measure via π

 $\pi: \mathcal{B}(\mathbf{m}) \to S(\mathbf{m})$ such that $\mathbb{P}(\boldsymbol{\sigma}) = \#(\pi^{-1}(\boldsymbol{\sigma})).$

Uniform measure on $\mathcal{B}(\mathbf{m})$ induces n-TASEP stationary measure via π

Pairing of dots in adjacent rows is referred to as a **queuing process** of customers and service.

 $\pi: \mathcal{B}(\mathbf{m}) \to S(\mathbf{m})$ such that $\mathbb{P}(\boldsymbol{\sigma}) = \#(\pi^{-1}(\boldsymbol{\sigma})).$

Uniform measure on $\mathcal{B}(\mathbf{m})$ induces n-TASEP stationary measure via π

Pairing of dots in adjacent rows is referred to as a **queuing process** of customers and service.

 π is most naturally formulated by **Combinatorial R** of the quantum affine algebra $U_q(\widehat{sl}_L)$

Contents.

- I. n-TASEP and stationary states
- II. Quantum group formulation of stationary probability quantum R, 3D L-operator, combinatorial R, corner transfer matrix of (q=0)-boson valued 5V, a new matrix product formula
- III. Hidden 3D structure related to tetrahedron equation
- IV. Remarks

Quantum R matrix for $U_q(\widehat{sl}_L)$

Degree s anti-symmetric tensor representation:

$$V^{s} = \bigoplus_{\mathbf{b} \in B^{s}} \mathbb{C} |\mathbf{b}\rangle, \quad B^{s} = \{(x_{1}, \dots, x_{L}) \in \{0, 1\}^{L} \mid x_{1} + \dots + x_{L} = s\}$$
$$\xleftarrow{1:1} \text{Length } s \text{ column shape standard tableaux}$$

Quantum R matrix for $U_q(\widehat{sl}_L)$

Degree s anti-symmetric tensor representation:

$$V^{s} = \bigoplus_{\mathbf{b} \in B^{s}} \mathbb{C} |\mathbf{b}\rangle, \quad B^{s} = \{(x_{1}, \dots, x_{L}) \in \{0, 1\}^{L} \mid x_{1} + \dots + x_{L} = s\}$$
$$\stackrel{1:1}{\longleftrightarrow} \text{Length } s \text{ column shape standard tableaux}$$

Quantum *R* matrix: $\Re(z) = \Re^{s,r}(z) : V^s \otimes V^r \to V^r \otimes V^s$ $\Re(z)(|\mathbf{i}\rangle \otimes |\mathbf{j}\rangle) = \sum_{\mathbf{a},\mathbf{b}} \Re(z)_{\mathbf{i},\mathbf{j}}^{\mathbf{a},\mathbf{b}} |\mathbf{b}\rangle \otimes |\mathbf{a}\rangle \quad (\mathbf{a} = (a_1, \dots, a_L) \in B^s, \text{ etc}).$

 \exists Normalization s.t. $\Re(z)_{i,j}^{a,b} = polynomials$ in q and z.

Quantum R matrix for $U_q(\widehat{sl}_L)$

Degree s anti-symmetric tensor representation:

$$V^{s} = \bigoplus_{\mathbf{b} \in B^{s}} \mathbb{C} |\mathbf{b}\rangle, \quad B^{s} = \{(x_{1}, \dots, x_{L}) \in \{0, 1\}^{L} \mid x_{1} + \dots + x_{L} = s\}$$
$$\stackrel{1:1}{\longleftrightarrow} \text{Length } s \text{ column shape standard tableaux}$$

Quantum *R* matrix: $\Re(z) = \Re^{s,r}(z) : V^s \otimes V^r \to V^r \otimes V^s$ $\Re(z)(|\mathbf{i}\rangle \otimes |\mathbf{j}\rangle) = \sum_{\mathbf{a},\mathbf{b}} \Re(z)^{\mathbf{a},\mathbf{b}}_{\mathbf{i},\mathbf{j}} |\mathbf{b}\rangle \otimes |\mathbf{a}\rangle \quad (\mathbf{a} = (a_1, \dots, a_L) \in B^s, \text{ etc}).$

 \exists Normalization s.t. $\Re(z)_{i,j}^{a,b} = polynomials$ in q and z.

Example. Nonzero elements of $\mathcal{R}^{1,2}(z)$ for $U_q(\widehat{sl}_3)$ are as follows.

 $\begin{aligned} & \mathcal{R}_{100,110}^{100,110} = \mathcal{R}_{010,110}^{010,110} = \mathcal{R}_{100,101}^{100,101} = \mathcal{R}_{001,101}^{010,011} = \mathcal{R}_{010,011}^{010,011} = \mathcal{R}_{001,011}^{001,011} = 1 + q^3 z, \\ & \mathcal{R}_{001,110}^{001,110} = \mathcal{R}_{010,101}^{010,101} = \mathcal{R}_{100,011}^{100,011} = q(1 + qz), \\ & \mathcal{R}_{010,101}^{001,110} = \mathcal{R}_{100,011}^{010,101} = z \mathcal{R}_{001,110}^{100,011} = -q(1 - q^2)z, \\ & \mathcal{R}_{100,011}^{001,110} = z \mathcal{R}_{001,110}^{010,101} = z \mathcal{R}_{010,011}^{100,011} = (1 - q^2)z. \end{aligned}$

Matrix product (BBQ stick) formula for the Quantum R

$$\mathfrak{R}(z)_{\mathbf{i},\mathbf{j}}^{\mathbf{a},\mathbf{b}} = \varrho(z) \operatorname{Tr} \left(z^{\mathbf{h}} \mathcal{L}_{i_{1},j_{1}}^{a_{1},b_{1}} \cdots \mathcal{L}_{i_{L},j_{L}}^{a_{L},b_{L}}
ight)$$

 $|\mathbf{h}|m\rangle = m|m\rangle$, $\mathbf{a} = (a_1, \ldots, a_L) \in B^s$, etc, $\varrho(z) =$ known.

 $\mathcal{L} = (\mathcal{L}_{i,j}^{a,b})_{a,b,i,j=0,1} = 3D \ L$ -operator (defined in the next page)

= operator on the Fock space $F = \oplus_m \mathbb{C} | m \rangle \quad \text{(blue arrow)}$

= **BBQ** stick with X shape sausages

3D L-operator (q-boson valued 6V model)

 $\mathbf{a}^+, \mathbf{a}^-, \mathbf{k}$ are q-boson operators on the Fock space $F = \bigoplus_{m \ge 0} \mathbb{C} | m \rangle$ $\mathbf{a}^+ | m \rangle = | m + 1 \rangle, \quad \mathbf{a}^- | m \rangle = (1 - q^{2m}) | m - 1 \rangle, \quad \mathbf{k} | m \rangle = (-q)^m | m \rangle$

3D L-operator (q-boson valued 6V model)

 $\mathbf{a}^+, \mathbf{a}^-, \mathbf{k}$ are q-boson operators on the Fock space $F = \bigoplus_{m \ge 0} \mathbb{C} | m \rangle$ $\mathbf{a}^+ | m \rangle = | m + 1 \rangle, \quad \mathbf{a}^- | m \rangle = (1 - q^{2m}) | m - 1 \rangle, \quad \mathbf{k} | m \rangle = (-q)^m | m \rangle$

Origin of q-boson valued L-operator

Quantized coordinate ring A_q(sl₃) [Kapranov-Voevodsky, 1994] Quantization of Miquel's theorem [Bazhanov-Mangazeev-Sergeev, 2008] q=0: Combinatorial R

Quantum $R: \quad \Re(z): V^s \otimes V^r \to V^r \otimes V^s, \quad V^s = \bigoplus_{\mathbf{b} \in B^s} \mathbb{C} |\mathbf{b}\rangle,$

 $|001
angle \otimes |110
angle$

 $\mapsto q(1+qz)|110\rangle \otimes |001\rangle + (1-q^2)|101\rangle \otimes |010\rangle - q(1-q^2)|011\rangle \otimes |100\rangle$

q=0: Combinatorial R

Quantum $R: \quad \Re(z): V^s \otimes V^r \to V^r \otimes V^s, \quad V^s = \bigoplus_{\mathbf{b} \in B^s} \mathbb{C} |\mathbf{b}\rangle,$

 $|001
angle \otimes |110
angle$

 $\mapsto q(1\!+\!qz)|110\rangle\!\otimes\!|001\rangle+(1\!-\!q^2)|101\rangle\!\otimes\!|010\rangle-q(1\!-\!q^2)|011\rangle\!\otimes\!|100\rangle$

Combinatorial R:
$$R := \Re(z = 1)|_{q=0}$$

(A more intrinsic definition exists, but this suffices for this talk.)

In the above example, R: $|001\rangle \otimes |110\rangle \mapsto |101\rangle \otimes |010\rangle$

q=0: Combinatorial R

Quantum $R: \quad \mathcal{R}(z): V^s \otimes V^r \to V^r \otimes V^s, \quad V^s = \bigoplus_{\mathbf{b} \in B^s} \mathbb{C} |\mathbf{b}\rangle,$

 $|001
angle \otimes |110
angle$

 $\mapsto q(1\!+\!qz)|110\rangle\!\otimes\!|001\rangle+(1\!-\!q^2)|101\rangle\!\otimes\!|010\rangle-q(1\!-\!q^2)|011\rangle\!\otimes\!|100\rangle$

Combinatorial R:
$$R := \Re(z = 1)|_{q=0}$$

(A more intrinsic definition exists, but this suffices for this talk.)

In the above example, R: $|001\rangle \otimes |110\rangle \mapsto |101\rangle \otimes |010\rangle$

Fact (from general theory of *crystal base* by [Kashiwara, 1991-]) Combinatorial R is a bijection $B^r \otimes B^s \to B^s \otimes B^r$ satisfying YBE. Depict $R(\mathbf{i} \otimes \mathbf{j}) = \mathbf{b} \otimes \mathbf{a}$ as

Nontrivial in that $\mathbf{b} \otimes \mathbf{a} \neq \mathbf{j} \otimes \mathbf{i}$ in general.

Depict $R(\mathbf{i} \otimes \mathbf{j}) = \mathbf{b} \otimes \mathbf{a}$ as

Nontrivial in that $\mathbf{b} \otimes \mathbf{a} \neq \mathbf{j} \otimes \mathbf{i}$ in general.

Combinatorial R: systematic examples of set-theoretical sol. of YBE.

The algorithm for finding the image of the combinatorial R

$$R: B^{s} \otimes B^{r} \to B^{r} \otimes B^{s}$$
$$\mathbf{i} \otimes \mathbf{j} \quad \mapsto \quad \mathbf{b} \otimes \mathbf{a}$$

is known as the Nakayashiki-Yamada (NY) rule (1997).

The algorithm for finding the image of the combinatorial R

$$R: B^{s} \otimes B^{r} \to B^{r} \otimes B^{s}$$
$$\mathbf{i} \otimes \mathbf{j} \quad \mapsto \quad \mathbf{b} \otimes \mathbf{a}$$

is known as the Nakayashiki-Yamada (NY) rule (1997).

NY-rule = queuing process in the Ferrari-Martin algorithm!

Ferrari-Martin map π as ``Corner transfer matrix (CTM)"

Elementary relabeling of *n*-TASEP σ by $\varphi_k(\sigma) \in B^{s_k}$ (k = 1, ..., n) defined as

σ	0313022
$\varphi_1(\boldsymbol{\sigma})$	0101000
$\varphi_2(\boldsymbol{\sigma})$	$0\ 1\ 0\ 1\ 0\ 1\ 1$
$\varphi_3(\boldsymbol{\sigma})$	0111011

Ferrari-Martin map π as ``Corner transfer matrix (CTM)"

Elementary relabeling of *n*-TASEP σ by $\varphi_k(\sigma) \in B^{s_k}$ (k = 1, ..., n) defined as

σ	0313022
$arphi_1(oldsymbol{\sigma})$	0101000
$\varphi_2(\boldsymbol{\sigma})$	$0\ 1\ 0\ 1\ 0\ 1\ 1$
$\varphi_3(\boldsymbol{\sigma})$	0111011

Ferrari-Martin map π as ``Corner transfer matrix (CTM)"

Elementary relabeling of *n*-TASEP σ by $\varphi_k(\sigma) \in B^{s_k}$ (k = 1, ..., n) defined as

σ	0313022
$\varphi_1(\boldsymbol{\sigma})$	0101000
$\varphi_2(\boldsymbol{\sigma})$	0101011
$\varphi_3(\boldsymbol{\sigma})$	0111011

Stationary probability $\mathbb{P}(\boldsymbol{\sigma}) = \#(\pi^{-1}(\boldsymbol{\sigma}))$ is expressed as CTM

$$\mathbb{P}(\boldsymbol{\sigma}) = \sum_{\mathbf{b}_1 \otimes \mathbf{b}_2 \otimes \mathbf{b}_3 \in \mathcal{B}(\mathbf{m})} \begin{array}{c} \mathbf{b}_1 & \stackrel{\uparrow}{\longrightarrow} \varphi_1(\boldsymbol{\sigma}) \\ \mathbf{b}_2 & \stackrel{\downarrow}{\longrightarrow} \varphi_2(\boldsymbol{\sigma}) \\ \mathbf{b}_3 & \stackrel{\downarrow}{\longrightarrow} \varphi_3(\boldsymbol{\sigma}) \end{array} (n = 3 \text{ case})$$

To each vertex here (= Combinatorial R) we are to substitute **the BBQ stick formula at q=0**.

Result:
$$\mathbb{P}(\boldsymbol{\sigma}) = \operatorname{Tr}_{F^{\otimes 3}}(X_{\sigma_1} \cdots X_{\sigma_L})$$
 $(n = 3 \text{ case})$

where X_i 's are CTMs of the 5V-model with the boundary conditions:

Example.

Theorem (Matrix product formula for stationary prob. of *n*-TASEP)

$$\mathbb{P}(\boldsymbol{\sigma}) = \mathrm{Tr}_{F^{\otimes n(n-1)/2}}(X_{\sigma_1}\cdots X_{\sigma_L})$$

 X_0, \ldots, X_n are CTMs of (q = 0)-boson valued 5 vertex model:

$$\in \operatorname{End}(F^{\otimes n(n-1)/2})$$

Theorem (Matrix product formula for stationary prob. of *n*-TASEP)

$$\mathbb{P}(\boldsymbol{\sigma}) = \mathrm{Tr}_{F^{\otimes n(n-1)/2}}(X_{\sigma_1}\cdots X_{\sigma_L})$$

 X_0, \ldots, X_n are CTMs of (q = 0)-boson valued 5 vertex model:

$$\in \operatorname{End}(F^{\otimes n(n-1)/2})$$

- X_i = Layer transfer matrix with \square shape
- $\mathbb{P}(\sigma) =$ Partition function of a 3D system with prism shape

Theorem (Matrix product formula for stationary prob. of *n*-TASEP)

$$\mathbb{P}(\boldsymbol{\sigma}) = \mathrm{Tr}_{F^{\otimes n(n-1)/2}}(X_{\sigma_1}\cdots X_{\sigma_L})$$

 X_0, \ldots, X_n are CTMs of (q = 0)-boson valued 5 vertex model:

$$\in \operatorname{End}(F^{\otimes n(n-1)/2})$$

- X_i = Layer transfer matrix with \bigtriangledown shape
- $\mathbb{P}(\sigma) =$ Partition function of a 3D system with prism shape

	initial setup	cross channel (we are here!)
Physical space	\mathbb{Z}_{L} ring	size n
Internal degree	{0,, <i>n</i> }	$U_{q}(\widehat{sl}_{L})$ at $q=0$

Contents.

- I. n-TASEP and stationary states
- II. Quantum group formulation of stationary probability
- Hidden 3D structure related to tetrahedron equation
 Zamolodchikov-Faddeev algebra,
 bilinear relations among layer transfer matrices,
 tetrahedron equation
- IV. Remarks

Local form of stationarity

If the operators $X = (X_{\alpha})_{0 \le \alpha \le n}$, $\hat{X} = (\hat{X}_{\alpha})_{0 \le \alpha \le n}$ satisfy hat relation: $h(X \otimes X) = X \otimes \hat{X} - \hat{X} \otimes X$ (h: local Markov matrix),

stationary states under P.B.C. is Tr(X X X) due to the cancellation

$$egin{aligned} &H\operatorname{Tr}(XX\cdots X)=\operatorname{Tr}\left((X\hat{X}-\hat{X}X)XX\cdots X
ight)\ &+\operatorname{Tr}\left(X(X\hat{X}-\hat{X}X)X\cdots X
ight)+\cdots=0 \end{aligned}$$

Local form of stationarity

If the operators $X = (X_{\alpha})_{0 \le \alpha \le n}$, $\hat{X} = (\hat{X}_{\alpha})_{0 \le \alpha \le n}$ satisfy hat relation: $h(X \otimes X) = X \otimes \hat{X} - \hat{X} \otimes X$ (h: local Markov matrix),

stationary states under P.B.C. is Tr(X X X) due to the cancellation

$$egin{aligned} &H\operatorname{Tr}(XX\cdots X)=\operatorname{Tr}\left((X\hat{X}-\hat{X}X)XX\cdots X
ight)\ &+\operatorname{Tr}\left(X(X\hat{X}-\hat{X}X)X\cdots X
ight)+\cdots=0 \end{aligned}$$

The hat relation is an infinitesimal version of the **Zamolodchikov-Faddeev (ZF) algebra**

 $S(x/y)(X(x)\otimes X(y))=X(y)\otimes X(x)$

with *spectral parameters* x, y via the correspondence

$$h = S'(1), \qquad X = X(1), \qquad \hat{X} = X'(1).$$

(S(z) = a stochastic R matrix at q=0 given in the next page effectively.)

In our n-TASEP, $X(z) = (X_0(z), ..., X_n(z))$ and the ZF relation are given by

 $xX_i(y)X_j(x) = yX_i(x)X_j(y) \ (i > j), \quad [X_i(x), X_j(y)] = [X_i(y), X_j(x)] \ (\forall i, j)$

highly non-local

In our n-TASEP, $X(z) = (X_0(z), ..., X_n(z))$ and the ZF relation are given by

$$xX_i(y)X_j(x) = yX_i(x)X_j(y) \ (i > j), \quad [X_i(x), X_j(y)] = [X_i(y), X_j(x)] \ (\forall i, j)$$

highly non-local

$$q \rightarrow 0$$

Strategy

Layer transfer matrices and their bilinear relations (q-melting)

In our n-TASEP, $X(z) = (X_0(z), ..., X_n(z))$ and the ZF relation are given by

$$X_{i}(y)X_{j}(x) = yX_{i}(x)X_{j}(y) (i > j), \quad [X_{i}(x), X_{j}(y)] = [X_{i}(y), X_{j}(x)] (\forall i, j)$$

highly non-local

Strategy

Layer transfer matrices and their bilinear relations (q-melting)

Tetrahedron equation (Single local relation)

••• q-boson Fock space F

attach spectral parameter

back for q≠0

Define Layer transfer matrix $T(z)_{j}^{a} \in \operatorname{End}(F^{\otimes n^{2}})$ as

NW-free/SE-fixed boundary condition $\mathbf{a} = (a_1, \dots, a_n), \ \mathbf{j} = (j_1, \dots, j_n)$ All vertices are $\mathcal{L}(z)$ Sum over all **black** edge spins except \mathbf{a}, \mathbf{j} Bilinear relations of Layer transfer matrices $\mathbf{T}(\mathbf{z})_{\mathbf{j}}^{\mathbf{a}}$ **Example**. (... is a common sequence for T(x) and T(y)) (1) $T(x)_{\mathbf{j}}^{\mathbf{a}}T(y)_{\mathbf{j}}^{\mathbf{a}} = T(y)_{\mathbf{j}}^{\mathbf{a}}T(x)_{\mathbf{j}}^{\mathbf{a}}$ (2) $y^{2}T(x)_{0,...}^{0,...}T(y)_{1,...}^{1,...} + xyT(x)_{1,...}^{0,...}T(y)_{0,...}^{1,...}T(y)_{0,...}^{0,...} + xyT(x)_{0,...}^{0,...}T(y)_{1,...}^{1,...}T(y)_{0,...}^{0,...} = (x \leftrightarrow y)$

Fact: The ZF relations are included (!) in (1) and (2) at q=0.

Bilinear relations of Layer transfer matrices $T(z)_{j}^{a}$ **Example**. (... is a common sequence for T(x) and T(y)) (1) $T(x)_{j}^{a}T(y)_{j}^{a} = T(y)_{j}^{a}T(x)_{j}^{a}$ Commutativity (2) $y^{2}T(x)_{0,...}^{0,...}T(y)_{1,...}^{1,...} + xyT(x)_{0,...}^{0,...}T(y)_{0,...}^{1,...}T(y)_{0,...}^{0,...} = (x \leftrightarrow y)$ **Fact**: The ZF relations are included (!) in (1) and (2) at q=0.

(1) and (2) are r=s=0 and r=s=1 special cases of

Prop. General bilinear relations of the layer transfer matrices

$$\sum x^{|\boldsymbol{\alpha}|+|\boldsymbol{\beta}|} y^{|\overline{\boldsymbol{\alpha}}|+|\overline{\boldsymbol{\beta}}|} T(x)_{..,\beta_1,...,\beta_{s,..}}^{..,\alpha_1,...,\alpha_r,..} T(y)_{..,\overline{\beta}_1,...,\overline{\beta}_{s,..}}^{..,\overline{\alpha}_1,...,\overline{\alpha}_r,..} = (x \leftrightarrow y).$$

• Sum over $\boldsymbol{\alpha} = (\alpha_1, \dots, \alpha_r) \in \{0, 1\}^r, \ \boldsymbol{\beta} = (\beta_1, \dots, \beta_s) \in \{0, 1\}^s.$

• $0 \le r \le n$, $0 \le s \le n$ are arbitrary, $\bar{\alpha}_i = 1 - \alpha_i$, $|\alpha| = \alpha_1 + \cdots + \alpha_r$, etc.

• Arrays "...." are arbitrary, but to be taken common for T(x) and T(y).

Proof of the bilinear relations of $T(z)_{i}^{a}$

Introduce a variant of the 3D *L*-operator: $\mathcal{M}(z) := \mathcal{L}(z)|_{q \to -q}$.

$$\mathcal{L}(z) = \mathcal{M}(z) = \mathcal{M}(z)$$

Proof of the bilinear relations of $T(z)_{j}^{a}$

Introduce a variant of the 3D *L*-operator: $\mathcal{M}(z) := \mathcal{L}(z)|_{q \to -q}$.

$$\mathcal{L}(z) = \mathcal{M}(z) = \mathcal{M}(z)$$

Theorem $(\mathcal{L}(z) \text{ and } \mathcal{M}(z) \text{ satisfy the tetrahedron equation})$

 $\mathcal{M}(\frac{ux}{y})_{126}\mathcal{M}(u)_{346}\mathcal{L}(x)_{135}\mathcal{L}(y)_{245} = \mathcal{L}(y)_{245}\mathcal{L}(x)_{135}\mathcal{M}(u)_{346}\mathcal{M}(\frac{ux}{y})_{126}$

Equality of linear operators on $\mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes F \otimes F$ Originally introduced as a 3D analogue of YBE [Zamolodchikov 1980]. Repeated application of the tetrahedron eq.

leads to

The bilinear relations are proved by evaluating this identity between various left/right eigenvectors of M(•) running along the green arrow.

Remarks

Quite a parallel story in the *cross channel* holds also for a class of **n-species Totally Asymmetric Zero Range Process (n-TAZRP)**, where smaller species particles have the *priority* to hop to the left neighbor site.

Remarks

Quite a parallel story in the *cross channel* holds also for a class of **n-species Totally Asymmetric Zero Range Process (n-TAZRP)**, where smaller species particles have the *priority* to hop to the left neighbor site.

A natural q-version of these models in the *direct channel* are formulated in terms of **Stochastic R matrices for U_q(A^{(1)}_n).** [K-Mangazeev-Maruyama-Okado 2016].