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Non-equilibrium Integrable systems

statistical mechanics Quantum groups,
Stochastic dynamics, Yang-Baxter equation, ...
Markov process, ...

Integrable Markov process
Spectral problem of the Markov matrix: solvable by Bethe ansatz
Exact asymptotic analysis: connection to random matrices, etc

Prototype examples
Asymmetric simple exclusion process (ASEP)
Asymmetric zero range process (ZRP)

Key features
@ Stochastic R matrix
@ Stationary states: matrix product structure
@ Zamolodchikov-Faddeev algebra
Hidden 3D structure related to the tetrahedron equation (no detail today)



This talk is mainly based on
K, Mangazeev, Okado, Stochastic R matrix for U,(AY)), Nucl. Phys. B913 (2016)

K and Okado, A g-boson representation of Zamolodchikov —Faddeev algebra
for stochastic R matrix of U (A) ), Lett. Math. Phys. 50 (2017)

K, Maruyama, Okado, Multispecies totally asymmetric zero range process:
Il. Hat relation and tetrahedron equation, J. Integrable Syst. 1 (2015)
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Preliminary on quantum groups

Ug = Uq(Af,l)): Drinfeld-Jimbo quantum affine algebra with

n+1 n+1 n+1
26 — 81 — 65

Cartan matrix: (ajj)ijes Where a;; =
generated by e;, f;, k(i € {0,1, ..., n}) satisfying
ki — kit

qg—q1

ek = ey, kifikt = qE, [enf] = 5
+ Serre relations.

Ug i1s a Hopf algebra, so there exists an algebra homomorphism
(coproduct) A : U; — Uy ® Uy, such that

Alej)) =1R e+ & ® ki,
A°P(ej) = e ®1+ ki ® €, etc.



Symmetric tensor representation

For | € Z~q set
n+1

B ={a=(ai,...,apt1) € Z"+1 | e = Za, =

V) = (D Q(q)|oa, - -, ant1).

a=(ai,...,an+1)EB

There exists a representation of U, with spectral parameter x

7wl . Uy — End(V)),

m(k)la) = g*+1 %),  TL(e)|a) = x*0[aj]la — & + €it1),
T (f)a) = x % 0a;]|a+ & — €ir1 ),

where [m] = q:;c;’iz and ¢; is the i-th standard basis vector of Z"t1.



Quantum R matrix

There exists a unique, up to overall normalization, intertwiner
R(x/y) = R"(x/y) : Vi® Vi = V| ® Vi,
satisfying
R(x/y)(r! ® m,') o Au) = (7! ® m,') o A%®(u) R(x/y), Vu e U,.
Employ the unit normalization condition
R(z)(|0,...,0,/)®10,...,0,m))=10,...,0,/)®|0,...,0, m).

When n =1, | = m =1 case corresponds to the 6 vertex model and
arbitray /, m case higher spin generalizations.

R!'™(z) satisfies the Yang-Baxter equation (YBE)

R(CIRE (0)Ry5 (v) = ReF (V)RS (x)Ri5(x) on Vi ® Vi ® Vi,



Stochastic gauge: S(z)

R(z)(|) ®18)) ZR(z)”’ﬁlv ® |6)

Want to modify it so as to satisfy (i) Sum-to-1 and (ii) Nonnegativity

(i)  S(2)2% = q"R(2)1%, Zs 1% =1 (Sum-to-1)

It is fulfilled with stochastic gauge n = Zl<,<1<,,+1( ivj — 04:51)

(Sum-to-1) = Uy(An) — orbit of the unit normalization condition.

(Sum-to-1) eventually leads to the total probability conservation
of the transition matrix of our discrete time Markov process.

5(z) also satisfies YBE. n =1 case is studied by Corwin-Petrov.



Specialization manifesting (ii) Nonnegativity

FSpecial value of z at which the matrix elements of S(z) are nonnegative.

S(z=q""0% = barprts P(7IB: a7, q72M),

where ¥ = (y1,...,7n) for v = (71,...,7n+1) and

A (A 9)51(5: 9)i3- 15 H (5 )

(s Q)|g| Yi/q

Oq(31B: A 1) = o (5)

= 2 Bi=m)y Aam = H“‘*") (%), @lars

1<i<j<n

n =1 case is introduced by Povolotsky.



Stochastic R matrix

In view of this formula, define an operator 8(, z) acting on W ® W by

SO )% = ot r+5Pa(718: A, 1),

)

SO\ m)(a) ® [8)) =D S(A, w)L%1y) ® 1),
~,0

W = b Q(q)|at,. .., an).

a=(a1,...,an) €LY

Proposition (KMMO)

S(A, p) satisfies nonnegativity in 0< p<A<1,0<qg<1, Sum-to-1, YBE.

)
2SO =1,
7,0

81,2(A, 1)81,3(A, ¥)82,3(, v) = 82,3(14,¥)81,3(A, ¥)81,2(A, 1) on WE,

v

Note that §(\, iz) does not take the form S(\/u).
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Commuting Markov transfer matrices

Consider the tensor product Wo @ W1 @ - - -

T()\|/11» co huL) — TrWo (SWO,WL(’\’ :ul-) "
To illustrate
T|p1,...,BL) = Z T;;; o laa
a1,...,&

)
S(A, p aﬂ = « +7

B
a1 a2

A1y 0L __ E
Tﬂ1’°'°,ﬁL
Y1se-YL

b1 B2

7L+ ’71+’72

® W, (W; = W) and define

Swpwi(A 1)) € End(WEL).

aL) € W®La



Discrete time Markov Process

Proposition
Q@ Sum-to-1: ) Tgll,j::;’ﬂ‘? = 1.

A1y

@ Nonnegativity: Matrix elements of T (A|p1,...,p1) € R>o when
O<pui<A<lO0<g<l.

© YBE for 8(\, ) implies [T(Alp1y .-y pr), TN |p1y. .. )] = 0.

Therefore
P(t+1)) = T(\|pa, ..., m)|P(t)) € WO

defines a family of discrete time Markov processes that is
simultaneously diagonalizable with respect to A.

(W, = W)

——




Continuous time Markov Process (1)

Set p1 =+ = pr = p, T(Alp) = T(Alg, ..., p) and
_10log T(A|p) Olog T(A|p)
H, = —p~ 1! H_ =

Since [T(A|p), T(N|n)] =0, we have [Hy, H_] =0 and T(A|u), H+ all
have common eigenvectors.

Baxter's formula works at two Hamiltonian points A = 1, u.
Hy are related by a daulity. Moreover, we have

@ Positivity; all the off-diagonal elements are nonnegative,

@ Sum-to-0; the sum of elements in any column is zero.

d
—|P(t) = HIP(t)) € W®", H =aH, + bH_ (a,b € Rxo)

defines a continuous time Markov process.



Continuous time Markov Process (2)

n=3 example

Particles 1 2 3
Q Q @

Hy = ZieZL hy ji+1 where hy is the local Markov matrix.

> a<icj<n(@i=yi)v ,, lv|-1 n
q— =" H (q) -1 Qo
hylo, B) = Z T ) | H ( ) oy, Bt ),
1€Z2,\{0} s i—1 \i/q
di<i<j<n YilBi—j) n
T (q)lvl—l (5i)
h-la, B) = la+7,8—7)

VEZS,\{0}

up to diagonal terms.

Defines a Zero Range Process of n-species of particles where
the transition rate depends on the occupancy of the departure site only.



S(z) actson V, ® V,,,

Stochastic U, ( n’) vertex model ]

Multi-species: [KMMO16]

Single-species: [CorPet16]*,[BorPet16]*

/

z=q " Ai=qpi=q"

~

Discrete-time g-Hahn Boson
Multi-species: —
Single-species: [Pov13],[Corl5]*

A—1

l

Continuous-time g-Hahn Boson
Multi-species: —
Single-species:[Takel4]

N

l

=1lm=1

~,

Stochastic six vertex model
Multi-species: —
Single—species: [GwaSp092],[BorCorGorl6]

ASEP(g, )
Multi-species:[Kuan16]*
Single-species: [CGRS15]*

/

| j— 00

w=0 /
}
g—Boson

Multi-species: [Takel5]
Single-species: [SaWa98]

AN

j=1/2

AN

)
ASEP

Multi-species: [Ligg76|,[BelSch16]*,[BelSch15-2]*,[Kuanl5]*
Single-species: [Spit70],[Sch97]*

Contains many integrable stochastic models known earlier (taken from Kuan ArXiv:1701.04468)
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Stationary states

Stationary states are those satisfying

Py = T(Alp,...,m)|P) € WO
Because of the weight conservation

Tal,...,a[_

BB, = Ounless g +---+ap = f1+ -+ BL € Z3,,

T is a direct sum of matrices acting on finite-dimensional subspaces
(sectors) of W®L parametrized by m = (my,..., m,) € Z2,.

S(m)={(o1,...,01) € (Zgo)L | o1+ -+ 0L = m},

P(m))y = ) P(oy, ..., 01|01, ,00).




n=2m=(2,1),u1 = p2 = pu3 = p. The stationary states for L = 2,3
are:

P(2,1))

(1—q*u)(3+q— p—3qu)|0,112)
+(1—p)(1+q+29° —2qu— q°p— q°p)|2,11)
+(14q)(1 - p)2+ 9+ 9° — p— qu— 29°p)|1,12) + cyclic.

P(2,1)) =3(1 — qu)(1 — ¢°1)(2 + g — (1 +2q)u)|0, 0, 112)
+(1—p)(1—qu)(3+39+3¢° — (1+5q +2¢° + q°)u)|0,2,11)
+(1+q)(1 — p)(1— gu)3+3q9+3¢° — (2+ 29+ 5¢°)u)(0, 1, 12)
+(L+q)(1 — p)(1 — qu)(5+ 29 +2¢° — (3+3q + 3¢°))[0,12,1)
+(1—p)(1—qu)(1+29+59° + q° — (39 + 3¢° + 3¢°))|0, 11, 2)
+(14+q)(1+qg+¢*)(1—p)*(2+qg—(1+29)u)|1,1,2) + cyclic.

4

Conjecturally P01, ...,01) € Z>0[q, —p4,-..,—L] in a certain normalization.



Matrix product formula

® T is nonnegative and satisfies Sum-to-1.

Perron-Frobenius i .
>  Stationary states are algebraic.




Matrix product formula

® T is nonnegative and satisfies Sum-to-1.

Perron-Frobenius i :
>  Stationary states are algebraic.

® T is the transfer matrix of a Yang-Baxter integrable lattice model.

Bethe ansatz

»  Stationary states are transcendental in general.



Matrix product formula

® T is nonnegative and satisfies Sum-to-1.

Perron-Frobenius i :
>  Stationary states are algebraic.

® T is the transfer matrix of a Yang-Baxter integrable lattice model.

Bethe ansatz

»  Stationary states are transcendental in general.

algebraic N transcendental =~ Matrix product structure

P(o1,...,00) = Tr(‘Xal(ul) ' "XoL(ML)’)-

|
Operators acting on some auxiliary space




Zamolodchikov-Faddeev algebra (1)

Proposition (to be proved on the next page)
If the operators X, (p) (o € Z%) satisfy the ZF relation

Xa(1)Xs(A) = ZS(A 1)y 5 Xy (M) Xs (1)

and the trace is nonzero, the matrix product formula holds.

|

Symbolically {X(,u) QR X(A) = (/\ ,U) [X()\) & X(/L)] J

PS()\ p) (Plu®v)=veu)

Originally introduced in integrable quantum field theories in (1+1)-dimension.

Structure function in that context = Scattering matrix satisfying Unitarity

Present context: Local form of the stationary condition
Structure function = Stochastic R satisfying Sum-to-1
It is a part of so-called RLL relation[L(1z) ® L(A)] R(\, i) = R(A, p)[L(N) ® L(p)].



Zamolodchikov-Faddeev algebra (2)

The proof of |P) = T|P) with T = T(\ = pu/|p1,..., 1) goes as

Tr(Xay (pa) - XaL(uL))

-1
= Y, (0 et o) TG 1)+ X -1)
131’ aﬁL 1 BL_I

1 Q-1 of

— Z (BL ? ? 1‘| >5L) Tr(Xﬂl(ul)”'Xﬁl_(/iL))
BrysBL Gt Bi1 B :
) ’ S 9 = id
= ) Tt Te(Xs, () -+ X, (e)): (pie; pur)
IBI"",ﬁL

which is a standard maneuver in dealing with
quantum Knizhnik-Zamolodchikov type equation.



g-Boson realization (1)

Consider the Fock space F = ,,~o Q(q)|m) and the operators b, b_, k
acting on them as

bim)=|m+1), b_|m=(1—qMm—1),  Km)=q"|m).
They satisfy the g-boson relation

kb: =g 'bik, bib_=1—-k, b_by=1- gk

Proposition (n = 2)

For a = (a1,a) € Z220, the operator on F

— 1 — 2 :
Xa(ﬂ) — K (:u’)al'l‘OQ (_l);" q)OO kazbgl
(9)e1(9)as (k=1bt; 9)o

satisfies the ZF relation.




g-Boson realization (2)

General n case: X, (u) = (g-boson)®"("~1)/2 ¢ End(Fen(n-1)/2),

Recursive structure in rank n (reminiscent of Nested Bethe ansatz).

For a = (a1,...,an) € Z%, set
+
P (1) ot
Xa(p) = X" (n) = °Z\M k),  of =aip1+ -+ an,
U= X = I @, 2 '

Theorem (KO)

The following recursive construction yields X,(u) satisfying ZF relation:

Zny= Y xPOebikib® @ @ btk
B=(B1,----Bn-1)ELL,"

Explcit factorized form available. For instance for n = 3,

Xooo(() = 2+ 818D (b-8by @ l)os(k®1@by)o
P00 B (C_1b+ R1IK l)oo (C_lb_ X b+ R l)oo(C_lk R1K b-l-)oo .




Final Remark (1)

FZ relation and (Sum-to-1) for S(A, p) imply
[AAW), A(plw)] =0 for AQAlw) = > Xa(A)wit---wgn.

n

aEZ%O
“"Grand canonical partition function” “Canonical partition function”
: o o
TI‘(A(21|W)° z,_|w)) E F (z1, . ..,z,_,q?wll---wn"

aEZ"

Symmetric rational function of z,,..., z,

Similar constructions for the simplest stochastic R matrix S*1(z)
with boundary twist have led to generalizations of Macdonald

polynomials and their matrix product formulas.
cf. Cantini-de Gier-Wheeler, Borodin-Petroy, ...



Final Remark (2)

-

o

Layer transfer matrix

T(zla,j) =

A

1
Wk
=

71 79 73

~

/ Tetrahedron equation \

ﬁlinear relation of Layer transfer matric&

Zl y** T(z|a,j)T(yla',j) = (x <> y)

VAR Y
N...[]

1

v |

\J

>

<
<

>

>

A

\_ /

qg — 0 limit

T(zla.j) = Y Xa(2) ®

(frozen part)

P -
>

/</\j

|

ZF relation at g=0

X(2) @ X(y) = (84=0)[X (y) ® X(2)]

Leads to combinatorial algorithm for stationary probability related to crystals.
Relation of this X(x) at g=0 and the previous one is yet to be clarified.



