Matrix products in integrable probability

Atsuo Kuniba (Univ. Tokyo)

Mathematical Society of Japan Spring Meeting

Tokyo Metropolitan University

27 March 2017

Non-equilibrium statistical mechanics

Stochastic dynamics, Markov process, ...

Integrable systems

Quantum groups, Yang-Baxter equation, ...

Integrable Markov process

Spectral problem of the Markov matrix: solvable by Bethe ansatz Exact asymptotic analysis: connection to random matrices, etc

Prototype examples

Asymmetric simple exclusion process (ASEP) Asymmetric zero range process (ZRP)

Key features

- Stochastic R matrix
- Stationary states: matrix product structure
- Zamolodchikov-Faddeev algebra
 Hidden 3D structure related to the tetrahedron equation (no detail today)

This talk is mainly based on

K, Mangazeev, Okado, Stochastic R matrix for $U_q(A^{(1)}_n)$, Nucl. Phys. B913 (2016)

K and Okado, A q-boson representation of Zamolodchikov –Faddeev algebra for stochastic R matrix of $U_q(A^{(1)}_n)$, Lett. Math. Phys. 50 (2017)

K, Maruyama, Okado, Multispecies totally asymmetric zero range process: II. Hat relation and tetrahedron equation, J. Integrable Syst. 1 (2015)

Contents.

I. Quantum/stochastic R matrices

Can a quantum R matrix be made stochastic? $U_q(A^{(1)}_n)$, symmetric tenor representation, quantum R matrix, stochastic gauge, specialization manifesting nonnegativity, stochastic R matrix

- II. Integrable Markov process
- III. Stationary states and matrix product formula

Preliminary on quantum groups

 $U_q = U_q(A_n^{(1)})$: Drinfeld-Jimbo quantum affine algebra with Cartan matrix: $(a_{ij})_{i,j\in I}$ where $a_{ij} = 2\delta_{ij}^{(n+1)} - \delta_{i,j+1}^{(n+1)} - \delta_{i,j-1}^{(n+1)}$ generated by $e_i, f_i, k_i^{\pm 1} (i \in \{0, 1, ..., n\})$ satisfying

$$k_i e_j k_i^{-1} = q^{a_{ij}} e_j, \quad k_i f_j k_i^{-1} = q^{-a_{ij}} f_j, \quad [e_i, f_j] = \delta_{ij} \frac{k_i - k_i^{-1}}{q - q^{-1}}$$

+ Serre relations.

 U_q is a Hopf algebra, so there exists an algebra homomorphism (coproduct) $\Delta : U_q \to U_q \otimes U_q$, such that

$$\Delta(e_i) = 1 \otimes e_i + e_i \otimes k_i, \ \Delta^{\mathrm{op}}(e_i) = e_i \otimes 1 + k_i \otimes e_i, ext{ etc.}$$

Symmetric tensor representation

For $l \in \mathbb{Z}_{>0}$ set $B_l = \{ \alpha = (\alpha_1, \dots, \alpha_{n+1}) \in \mathbb{Z}_{\geq 0}^{n+1} \mid |\alpha| := \sum_{i=1}^{n+1} \alpha_i = l \}$ $V_l = \bigoplus_{\alpha = (\alpha_1, \dots, \alpha_{n+1}) \in B_l} \mathbb{Q}(q) \mid \alpha_1, \dots, \alpha_{n+1} \rangle.$

There exists a representation of U_q with spectral parameter x

$$\pi'_{x}: U_{q} \to \operatorname{End}(V_{l}),$$

$$\begin{aligned} \pi_{x}^{I}(k_{i})|\alpha\rangle &= q^{\alpha_{i+1}-\alpha_{i}}|\alpha\rangle, \quad \pi_{x}^{I}(e_{i})|\alpha\rangle = x^{\delta_{i,0}}[\alpha_{i}]|\alpha-\varepsilon_{i}+\varepsilon_{i+1}\rangle, \\ \pi_{x}^{I}(f_{i})|\alpha\rangle &= x^{-\delta_{i,0}}[\alpha_{i+1}]|\alpha+\varepsilon_{i}-\varepsilon_{i+1}\rangle, \end{aligned}$$

where $[m] = \frac{q^m - q^{-m}}{q - q^{-1}}$ and ε_i is the *i*-th standard basis vector of \mathbb{Z}^{n+1} .

Quantum R matrix

There exists a unique, up to overall normalization, intertwiner

$$R(x/y) = R^{l,m}(x/y) : V_l \otimes V_m \to V_l \otimes V_m,$$

satisfying

$$R(x/y)(\pi'_x \otimes \pi''_y) \circ \Delta(u) = (\pi'_x \otimes \pi''_y) \circ \Delta^{\mathsf{op}}(u) R(x/y), \qquad \forall u \in U_q.$$

Employ the unit normalization condition

$$R(z)(|0,\ldots,0,I\rangle\otimes|0,\ldots,0,m\rangle)=|0,\ldots,0,I\rangle\otimes|0,\ldots,0,m\rangle.$$

When n = 1, l = m = 1 case corresponds to the **6 vertex model** and arbitray l, m case **higher spin** generalizations.

 $R^{I,m}(z)$ satisfies the Yang-Baxter equation (YBE)

$$R_{1,2}^{k,l}(x)R_{1,3}^{k,m}(xy)R_{2,3}^{l,m}(y) = R_{2,3}^{l,m}(y)R_{1,3}^{k,m}(xy)R_{1,2}^{k,l}(x) \quad \text{on } V_k \otimes V_l \otimes V_m.$$

Stochastic gauge: S(z)

$${\sf R}(z)(|lpha
angle\otimes|eta
angle)=\sum_{\gamma,\delta}{\sf R}(z)^{\gamma,\delta}_{lpha,eta}|\gamma
angle\otimes|\delta
angle$$

Want to modify it so as to satisfy (i) Sum-to-1 and (ii) Nonnegativity

(i)
$$S(z)_{\alpha,\beta}^{\gamma,\delta} = q^{\eta}R(z)_{\alpha,\beta}^{\gamma,\delta}, \qquad \sum_{\gamma,\delta}S(z)_{\alpha,\beta}^{\gamma,\delta} = 1$$
 (Sum-to-1)

It is fulfilled with stochastic gauge $\eta = \sum_{1 \le i < j \le n+1} (\delta_i \gamma_j - \alpha_i \beta_j)$.

 $(Sum-to-1) = U_q(A_n) - orbit of the unit normalization condition.$

(Sum-to-1) eventually leads to the **total probability conservation** of the transition matrix of our discrete time Markov process.

S(z) also satisfies YBE. n = 1 case is studied by Corwin-Petrov.

Specialization manifesting (ii) Nonnegativity

^{\exists}Special value of z at which the matrix elements of S(z) are nonnegative.

$$S(z = q^{l-m})_{\alpha,\beta}^{\gamma,\delta} = \delta_{\alpha+\beta,\gamma+\delta} \Phi_{q^2}(\bar{\gamma}|\bar{\beta}; q^{-2l}, q^{-2m}),$$

where $\bar{\gamma} = (\gamma_1, \dots, \gamma_n)$ for $\gamma = (\gamma_1, \dots, \gamma_{n+1})$ and
$$\Phi_q(\bar{\gamma}|\bar{\beta}; \lambda, \mu) = q^{\xi} \left(\frac{\mu}{\lambda}\right)^{|\bar{\gamma}|} \frac{(\lambda; q)_{|\bar{\gamma}|}(\frac{\mu}{\lambda}; q)_{|\bar{\beta}|-|\bar{\gamma}|}}{(\mu; q)_{|\bar{\beta}|}} \prod_{i=1}^n {\beta_i \choose \gamma_i}_q,$$

$$\xi = \sum_{i=1}^{n} (\beta_i - \gamma_i) \gamma_i (\gamma_i) = \prod_{i=1}^{m-1} (1-\gamma_i) \gamma_i (m) = (q)_m$$

$$\xi = \sum_{1 \leq i < j \leq n} (\beta_i - \gamma_i) \gamma_j, \ (\lambda; q)_m = \prod_{i=0} (1 - \lambda q^i), \ \binom{m}{k}_q = \frac{(q)_m}{(q)_k(q)_{m-k}}.$$

n = 1 case is introduced by Povolotsky.

Stochastic R matrix

In view of this formula, define an operator $S(\lambda, \mu)$ acting on $W \otimes W$ by

$$\begin{split} & \mathbb{S}(\lambda,\mu)_{\alpha,\beta}^{\gamma,\delta} = \delta_{\alpha+\beta,\gamma+\delta} \Phi_q(\gamma|\beta;\lambda,\mu), \\ & \mathbb{S}(\lambda,\mu)(|\alpha\rangle \otimes |\beta\rangle) = \sum_{\gamma,\delta} \mathbb{S}(\lambda,\mu)_{\alpha,\beta}^{\gamma,\delta} |\gamma\rangle \otimes |\delta\rangle, \\ & W = \bigoplus_{\alpha = (\alpha_1,\dots,\alpha_n) \in \mathbb{Z}_{>0}^n} \mathbb{Q}(q) |\alpha_1,\dots,\alpha_n\rangle. \end{split}$$

Proposition (KMMO)

 $\delta(\lambda,\mu)$ satisfies nonnegativity in $0 < \mu < \lambda < 1, 0 < q < 1$, Sum-to-1, YBE.

$$\begin{split} &\sum_{\gamma,\delta} \mathbb{S}(\lambda,\mu)_{\alpha,\beta}^{\gamma,\delta} = 1, \\ &\mathbb{S}_{1,2}(\lambda,\mu) \mathbb{S}_{1,3}(\lambda,\nu) \mathbb{S}_{2,3}(\mu,\nu) = \mathbb{S}_{2,3}(\mu,\nu) \mathbb{S}_{1,3}(\lambda,\nu) \mathbb{S}_{1,2}(\lambda,\mu) \quad \textit{on } W^{\otimes 3}. \end{split}$$

Note that $S(\lambda, \mu)$ does **not** take the form $S(\lambda/\mu)$.

Contents.

I. Quantum/Stochastic R matrices

II. Integrable Markov process commuting Markov transfer matrices, discrete time Markov Process, continuous time Markov Process

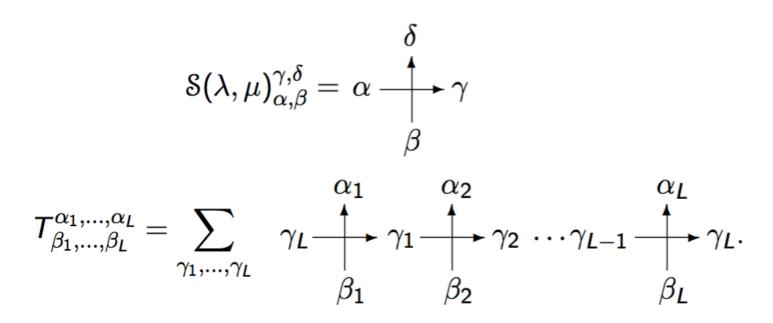
III. Stationary states and matrix product formula

Commuting Markov transfer matrices

Consider the tensor product $W_0 \otimes W_1 \otimes \cdots \otimes W_L$ ($W_i = W$) and define $T(\lambda | \mu_1, \dots, \mu_L) = \operatorname{Tr}_{W_0} (S_{W_0, W_L}(\lambda, \mu_L) \cdots S_{W_0, W_1}(\lambda, \mu_1)) \in \operatorname{End}(W^{\otimes L}).$

To illustrate

$$T|\beta_1,\ldots,\beta_L\rangle=\sum_{\alpha_1,\ldots,\alpha_L}T^{\alpha_1,\ldots,\alpha_L}_{\beta_1,\ldots,\beta_L}|\alpha_1,\ldots,\alpha_L\rangle\in W^{\otimes L},$$



Discrete time Markov Process

Proposition

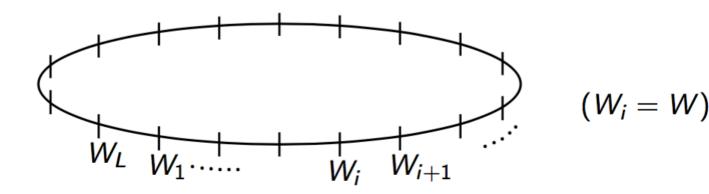
1 Sum-to-1:
$$\sum_{\alpha_1,...,\alpha_L} T^{\alpha_1,...,\alpha_L}_{\beta_1,...,\beta_L} = 1$$

- 2 Nonnegativity: Matrix elements of $T(\lambda | \mu_1, ..., \mu_L) \in \mathbb{R}_{\geq 0}$ when $0 < \mu_i < \lambda < 1, 0 < q < 1$.
- 3 YBE for $S(\lambda, \mu)$ implies $[T(\lambda | \mu_1, \dots, \mu_L), T(\lambda' | \mu_1, \dots, \mu_L)] = 0.$

Therefore

$$|P(t+1)
angle = T(\lambda|\mu_1,\ldots,\mu_L)|P(t)
angle \in W^{\otimes L}$$

defines a family of **discrete time Markov processes** that is simultaneously diagonalizable with respect to λ .



Continuous time Markov Process (1)

Set $\mu_1 = \cdots = \mu_L = \mu$, $T(\lambda|\mu) = T(\lambda|\mu, \dots, \mu)$ and

$$H_{+} = -\mu^{-1} rac{\partial \log T(\lambda|\mu)}{\partial \lambda} \Big|_{\lambda=1}, \qquad H_{-} = \mu \left. rac{\partial \log T(\lambda|\mu)}{\partial \lambda} \Big|_{\lambda=\mu} \right|_{\lambda=\mu}$$

Since $[T(\lambda|\mu), T(\lambda'|\mu)] = 0$, we have $[H_+, H_-] = 0$ and $T(\lambda|\mu), H_{\pm}$ all have common eigenvectors.

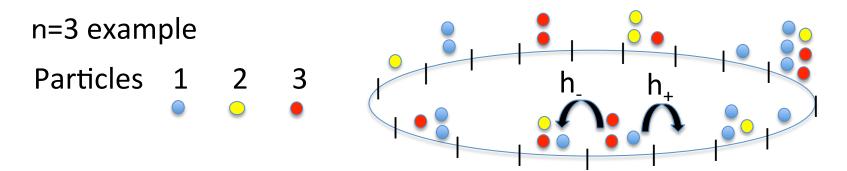
Baxter's formula works at **two** Hamiltonian points $\lambda = 1, \mu$. H_{\pm} are related by a daulity. Moreover, we have

- Positivity; all the off-diagonal elements are nonnegative,
- Sum-to-0; the sum of elements in any column is zero.

$$rac{d}{dt}|P(t)
angle=H|P(t)
angle\in W^{\otimes L}, \quad H=aH_++bH_-\ (a,b\in\mathbb{R}_{\geq 0})$$

defines a continuous time Markov process.

Continuous time Markov Process (2)

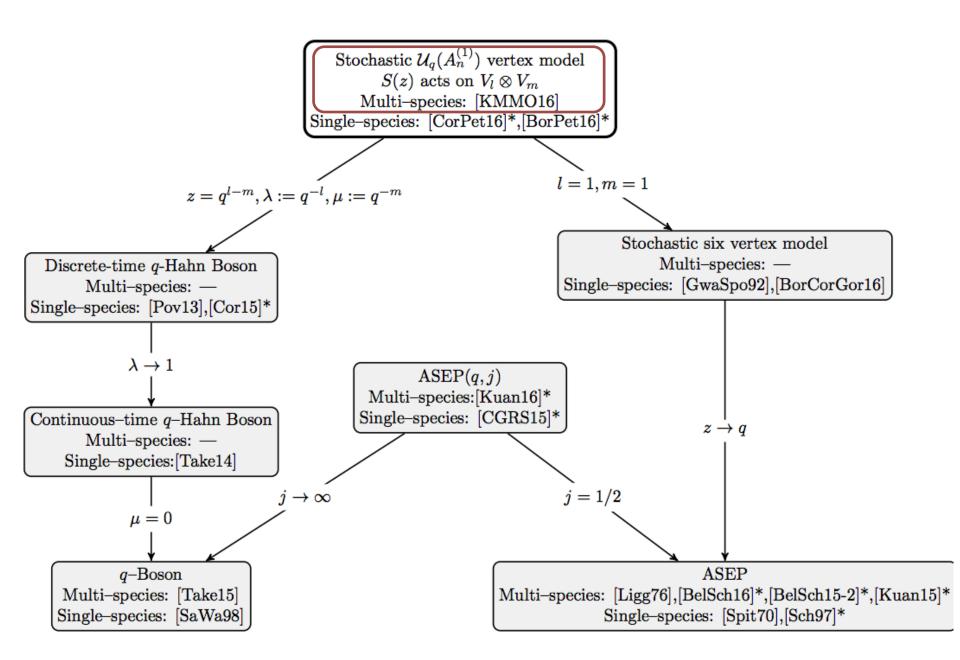


 $H_{\pm} = \sum_{i \in \mathbb{Z}_L} h_{\pm,i,i+1}$ where h_{\pm} is the **local** Markov matrix.

$$\begin{split} h_{+}|\alpha,\beta\rangle &= \sum_{\gamma\in\mathbb{Z}_{\geq0}^{n}\setminus\{0\}} \frac{q^{\sum_{1\leq i< j\leq n}(\alpha_{i}-\gamma_{i})\gamma_{j}}\mu^{|\gamma|-1}(q)_{|\gamma|-1}}{(\mu q^{|\alpha|-|\gamma|};q)_{|\gamma|}}\prod_{i=1}^{n}\binom{\alpha_{i}}{\gamma_{i}}|\alpha-\gamma,\beta+\gamma\rangle,\\ h_{-}|\alpha,\beta\rangle &= \sum_{\gamma\in\mathbb{Z}_{\geq0}^{n}\setminus\{0\}} \frac{q^{\sum_{1\leq i< j\leq n}\gamma_{i}(\beta_{j}-\gamma_{j})}(q)_{|\gamma|-1}}{(\mu q^{|\beta|-|\gamma|};q)_{|\gamma|}}\prod_{i=1}^{n}\binom{\beta_{i}}{\gamma_{i}}|\alpha+\gamma,\beta-\gamma\rangle \end{split}$$

up to diagonal terms.

Defines a Zero Range Process of *n*-species of particles where the transition rate depends on the occupancy of the departure site only.



Contains many integrable stochastic models known earlier (taken from Kuan ArXiv:1701.04468)

Contents.

- I. Quantum/Stochastic R matrices
- II. Integrable Markov process

III. Stationary states and matrix product formula

stationary states, example, matrix product formula, Zamolodchikov-Faddeev algebra, q-boson realization, final remarks. **Stationary states**

Stationary states are those satisfying

$$|\overline{P}\rangle = T(\lambda|\mu_1,\ldots,\mu_L)|\overline{P}\rangle \in W^{\otimes L}.$$

Because of the weight conservation

$$T^{\alpha_1,\ldots,\alpha_L}_{\beta_1,\ldots,\beta_L} = 0 \text{ unless } \alpha_1 + \cdots + \alpha_L = \beta_1 + \cdots + \beta_L \in \mathbb{Z}^n_{\geq 0},$$

T is a direct sum of matrices acting on finite-dimensional subspaces (sectors) of $W^{\otimes L}$ parametrized by $m = (m_1, \ldots, m_n) \in \mathbb{Z}_{>0}^n$.

$$S(m) = \{(\sigma_1,\ldots,\sigma_L) \in (\mathbb{Z}_{\geq 0}^n)^L \mid \sigma_1 + \cdots + \sigma_L = m\},\$$

$$|\overline{P}(m)\rangle = \sum_{(\sigma_1,\ldots,\sigma_L)\in S(m)} \mathbb{P}(\sigma_1,\ldots,\sigma_L)|\sigma_1,\ldots,\sigma_L\rangle.$$

Stationary probability

Example

 $n = 2, m = (2, 1), \mu_1 = \mu_2 = \mu_3 = \mu$. The stationary states for L = 2, 3 are:

$$egin{aligned} |\overline{P}(2,1)
angle &= (1-q^2\mu)(3+q-\mu-3q\mu)|\emptyset,112
angle \ &+ (1-\mu)(1+q+2q^2-2q\mu-q^2\mu-q^3\mu)|2,11
angle \ &+ (1+q)(1-\mu)(2+q+q^2-\mu-q\mu-2q^2\mu)|1,12
angle + ext{cyclic.} \end{aligned}$$

$$\begin{split} |\overline{P}(2,1)\rangle &= 3(1-q\mu)(1-q^2\mu)(2+q-(1+2q)\mu)|\emptyset,\emptyset,112\rangle \\ &+ (1-\mu)(1-q\mu)(3+3q+3q^2-(1+5q+2q^2+q^3)\mu)|\emptyset,2,11\rangle \\ &+ (1+q)(1-\mu)(1-q\mu)(3+3q+3q^2-(2+2q+5q^2)\mu)|\emptyset,1,12\rangle \\ &+ (1+q)(1-\mu)(1-q\mu)(5+2q+2q^2-(3+3q+3q^2)\mu)|\emptyset,12,1\rangle \\ &+ (1-\mu)(1-q\mu)(1+2q+5q^2+q^3-(3q+3q^2+3q^3)\mu)|\emptyset,11,2\rangle \\ &+ (1+q)(1+q+q^2)(1-\mu)^2(2+q-(1+2q)\mu)|1,1,2\rangle + \text{cyclic.} \end{split}$$

Conjecturally $\mathbb{P}(\sigma_1, \ldots, \sigma_L) \in \mathbb{Z}_{\geq 0}[q, -\mu_1, \ldots, -\mu_L]$ in a certain normalization.

Matrix product formula

T is nonnegative and satisfies Sum-to-1.

Perron-Frobenius

Stationary states are algebraic.

Matrix product formula

T is nonnegative and satisfies Sum-to-1.

Perron-Frobenius

Stationary states are algebraic.

T is the transfer matrix of a Yang-Baxter integrable lattice model.

Bethe ansatz

Stationary states are transcendental in general.

Matrix product formula

T is nonnegative and satisfies Sum-to-1.

Perron-Frobenius

Stationary states are algebraic.

T is the transfer matrix of a Yang-Baxter integrable lattice model.

Bethe ansatz

Stationary states are transcendental in general.

algebraic \cap transcendental \simeq Matrix product structure

$$\mathbb{P}(\sigma_1,\ldots,\sigma_L)=\mathrm{Tr}(X_{\sigma_1}(\mu_1)\cdots X_{\sigma_L}(\mu_L)).$$

Operators acting on some *auxiliary space*

Zamolodchikov-Faddeev algebra (1)

Proposition (to be proved on the next page)

If the operators $X_{lpha}(\mu)$ $(lpha \in \mathbb{Z}_{\geq 0}^n)$ satisfy the ZF relation

$$X_lpha(\mu)X_eta(\lambda) = \sum_{\gamma,\delta} \mathbb{S}(\lambda,\mu)^{eta,lpha}_{\gamma,\delta}X_\gamma(\lambda)X_\delta(\mu)$$

and the trace is nonzero, the matrix product formula holds.

Symbolically
$$X(\mu) \otimes X(\lambda) = \check{S}(\lambda,\mu) [X(\lambda) \otimes X(\mu)]$$

 $PS(\lambda,\mu) \quad (P(u \otimes v) = v \otimes u)$

Originally introduced in integrable quantum field theories in (1+1)-dimension. Structure function in that context = Scattering matrix satisfying **Unitarity** Present context: Local form of the stationary condition

Structure function = Stochastic R satisfying **Sum-to-1**

It is a part of so-called **RLL relation** $[L(\mu) \otimes L(\lambda)]\check{R}(\lambda,\mu) = \check{R}(\lambda,\mu)[L(\lambda) \otimes L(\mu)].$

Zamolodchikov-Faddeev algebra (2)

The proof of $|\overline{P}\rangle = T|\overline{P}\rangle$ with $T = T(\lambda = \mu_L | \mu_1, \dots, \mu_L)$ goes as

$$\operatorname{Tr}(X_{\alpha_{1}}(\mu_{1})\cdots X_{\alpha_{L}}(\mu_{L}))$$

$$=\sum_{\beta_{1},\ldots,\beta_{L}}\left(\beta_{L} \xrightarrow{\alpha_{1}} \cdots \xrightarrow{\alpha_{L-1}} \alpha_{L}\right) \operatorname{Tr}(X_{\beta_{L}}(\mu_{L})X_{\beta_{1}}(\mu_{1})\cdots X_{\beta_{L-1}}(\mu_{L-1}))$$

$$=\sum_{\beta_{1},\ldots,\beta_{L}}\left(\beta_{L} \xrightarrow{\alpha_{1}} \cdots \xrightarrow{\alpha_{L-1}} \alpha_{L} \atop \beta_{L-1} \beta_{L} \right) \operatorname{Tr}(X_{\beta_{1}}(\mu_{1})\cdots X_{\beta_{L}}(\mu_{L}))$$

$$=\sum_{\beta_{1},\ldots,\beta_{L}} T_{\beta_{1},\ldots,\beta_{L}}^{\alpha_{1},\ldots,\alpha_{L}} \operatorname{Tr}(X_{\beta_{1}}(\mu_{1})\cdots X_{\beta_{L}}(\mu_{L})))$$

$$\check{S}(\mu_{L},\mu_{L}) = \operatorname{id}$$

which is a standard maneuver in dealing with *quantum Knizhnik-Zamolodchikov type equation*.

q-Boson realization (1)

Consider the Fock space $F = \bigoplus_{m \ge 0} \mathbb{Q}(q) |m\rangle$ and the operators $\mathbf{b}_+, \mathbf{b}_-, \mathbf{k}$ acting on them as

 $\mathbf{b}_+|m
angle=|m+1
angle, \qquad \mathbf{b}_-|m
angle=(1-q^m)|m-1
angle, \qquad \mathbf{k}|m
angle=q^m|m
angle.$

They satisfy the q-boson relation

 $\mathbf{k}\mathbf{b}_{\pm} = q^{\pm 1}\mathbf{b}_{\pm}\mathbf{k}, \qquad \mathbf{b}_{+}\mathbf{b}_{-} = 1 - \mathbf{k}, \qquad \mathbf{b}_{-}\mathbf{b}_{+} = 1 - q\mathbf{k}.$

Proposition (n = 2)

For $\alpha = (\alpha_1, \alpha_2) \in \mathbb{Z}^2_{\geq 0}$, the operator on F

$$X_{\alpha}(\mu) = \frac{\mu^{-\mu_1-\mu_2}(\mu)_{\alpha_1+\alpha_2}}{(q)_{\alpha_1}(q)_{\alpha_2}} \frac{(\mathbf{b}_+;q)_{\infty}}{(\mu^{-1}\mathbf{b}_+;q)_{\infty}} \mathbf{k}^{\alpha_2} \mathbf{b}_-^{\alpha_1}$$

satisfies the ZF relation.

q-Boson realization (2)

General *n* case: $X_{\alpha}(\mu) = (q\text{-boson})^{\otimes n(n-1)/2} \in \text{End}(F^{\otimes n(n-1)/2}).$ Recursive structure in rank *n* (reminiscent of **Nested Bethe ansatz**). For $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{Z}_{\geq 0}^n$, set $X_{\alpha}(\mu) = X_{\alpha}^{(n)}(\mu) = \frac{\mu^{-\alpha_0^+}(\mu)_{\alpha_0^+}}{\prod_{i=1}^n (q)_{\alpha_i}} Z_{\alpha}^{(n)}(\mu), \qquad \alpha_i^+ = \alpha_{i+1} + \dots + \alpha_n,$

Theorem (KO)

The following recursive construction yields $X_{\alpha}(\mu)$ satisfying ZF relation:

$$Z_{\alpha}^{(n)}(\zeta) = \sum_{\beta = (\beta_1, \dots, \beta_{n-1}) \in \mathbb{Z}_{\geq 0}^{n-1}} X_{\beta}^{(n-1)}(\zeta) \otimes \mathbf{b}_{+}^{\beta_1} \mathbf{k}^{\alpha_1^+} \mathbf{b}_{-}^{\alpha_1} \otimes \cdots \otimes \mathbf{b}_{+}^{\beta_{n-1}} \mathbf{k}^{\alpha_{n-1}^+} \mathbf{b}_{-}^{\alpha_{n-1}}$$

Explcit factorized form available. For instance for n = 3,

$$X_{0,0,0}(\zeta) = \frac{(\mathbf{b}_+ \otimes 1 \otimes 1)_\infty}{(\zeta^{-1}\mathbf{b}_+ \otimes 1 \otimes 1)_\infty} \frac{(\mathbf{b}_- \otimes \mathbf{b}_+ \otimes 1)_\infty (\mathbf{k} \otimes 1 \otimes \mathbf{b}_+)_\infty}{(\zeta^{-1}\mathbf{b}_- \otimes \mathbf{b}_+ \otimes 1)_\infty (\zeta^{-1}\mathbf{k} \otimes 1 \otimes \mathbf{b}_+)_\infty}.$$

Final Remark (1)

FZ relation and (Sum-to-1) for $S(\lambda, \mu)$ imply $[A(\lambda|w), A(\mu|w)] = 0 \quad \text{for} \quad A(\lambda|w) = \sum_{\alpha \in \mathbb{Z}_{\geq 0}^n} X_{\alpha}(\lambda) w_1^{\alpha_1} \cdots w_n^{\alpha_n}.$

``Grand canonical partition function"

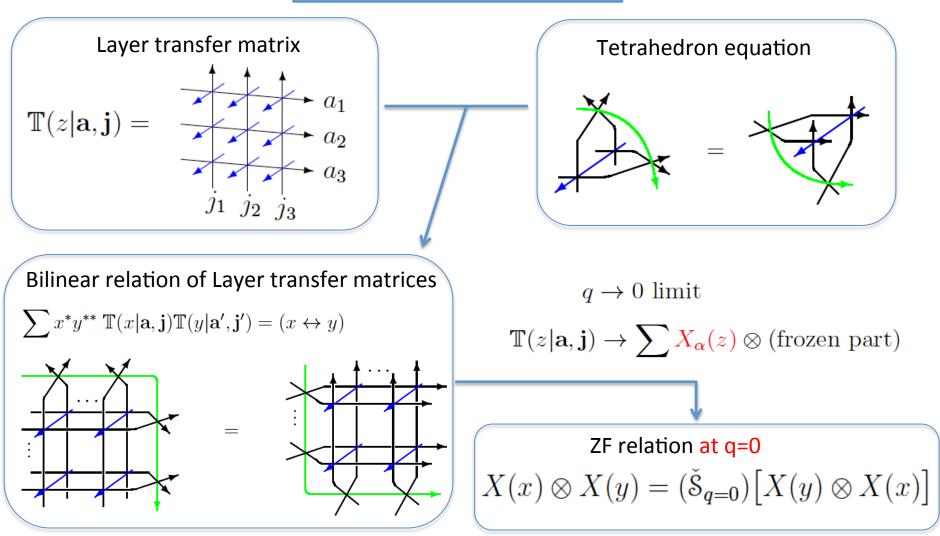
``Canonical partition function"

$$\operatorname{Tr}\left(A(z_1|w)\cdots A(z_L|w)\right) = \sum_{\alpha\in\mathbb{Z}_{\geq 0}^n} F_{\alpha}(z_1,\ldots,z_L;q)w_1^{\alpha_1}\cdots w_n^{\alpha_n}$$

Symmetric rational function of $z_1, ..., z_L$

Similar constructions for the simplest stochastic R matrix S^{1,1}(z) with boundary twist have led to generalizations of Macdonald polynomials and their matrix product formulas. cf. Cantini-de Gier-Wheeler, Borodin-Petrov, ...

Final Remark (2)



Leads to combinatorial algorithm for stationary probability related to **crystals**. Relation of this X(x) at q=0 and the previous one is yet to be clarified.