Tetrahedron equation and matrix product method

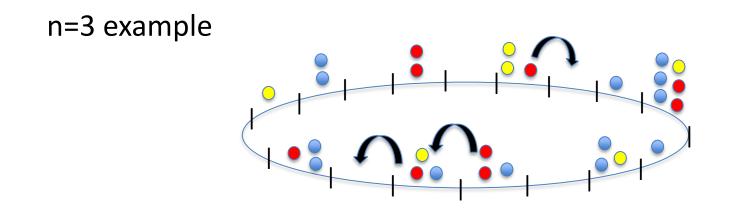
Atsuo Kuniba (Univ. Tokyo)

Joint work with S. Maruyama and M. Okado

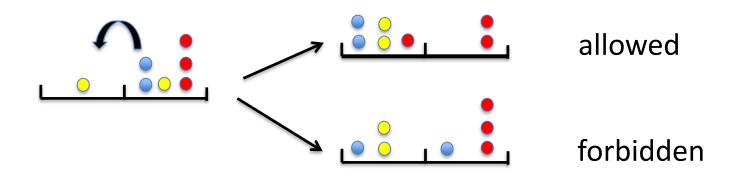
Reference Multispecies totally asymmetric zero range process I, II Journal of Integrable Systems (2016)

RAQIS'16 26 Aug. 2016, Univ. of Geneva

n-species Totally Asymmetric Zero-Rang Process (n-TAZRP)



Species 123Smaller species particles have priority•••to hop to the left neighbor site



Local state (site variable)

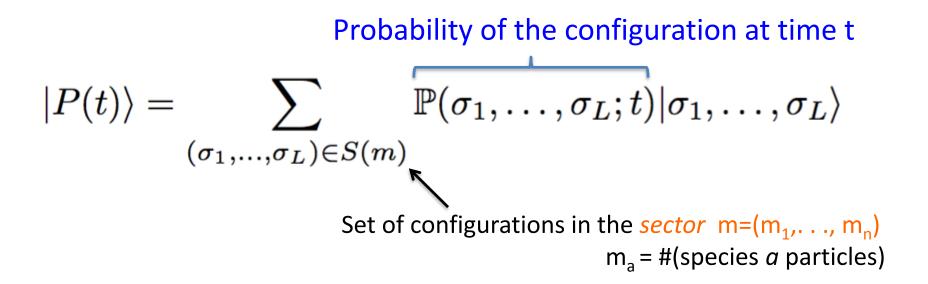
 $\alpha = (\alpha_1, \dots, \alpha_n) \in (\mathbb{Z}_{\geq 0})^n, \quad \alpha_a = \#(\text{species } a \text{ particles})$ $(\gamma, \delta) > (\alpha, \beta) \stackrel{\text{def}}{\iff} \text{ local transition } (\gamma, \delta) \to (\alpha, \beta) \text{ is allowed (priority rule obeyed)}$

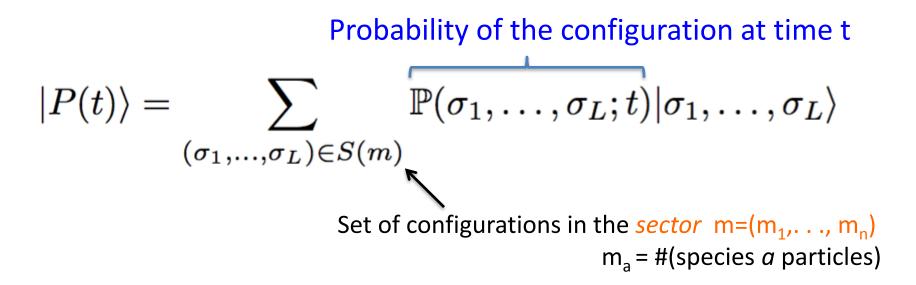
ocal Markov matrix :
$$h|\gamma,\delta
angle = \sum_{(\gamma,\delta)>(lpha,eta)} \left(|lpha,eta
angle-|\gamma,\delta
angle
ight)$$

Markov matrix :
$$H = \sum_{i \in \mathbb{Z}_L} h_{i,i+1}$$

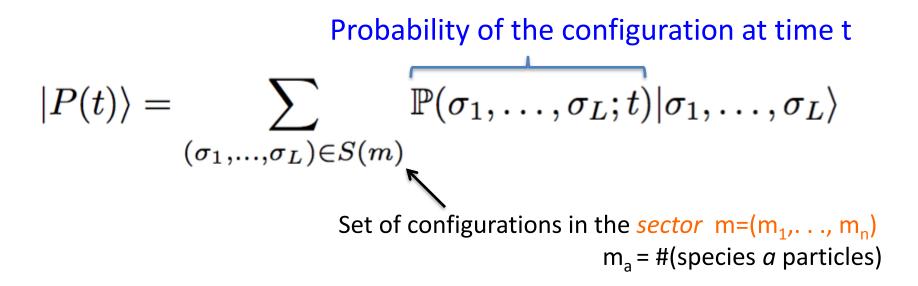
We consider n-TAZRP on 1D periodic chain, which is a Markov process governed by the master equation

$$\frac{d}{dt}|P(t)\rangle = H|P(t)\rangle$$





- Problem in non-equilibrium statistical mechanics
- Stochastic dynamics of n-species particles with priority constraint within the same departure site (zero-range interaction)



- Problem in non-equilibrium statistical mechanics
- Stochastic dynamics of n-species particles with priority constraint within the same departure site (zero-range interaction)
- Example of *Integrable Probability*:

Today's main topic

Associated with Stochastic R matrix for $U_q(A^{(1)}_n)$ (arXiv:1604:08304)

These features become most manifest for multispecies setting n>1

Steady states: H | P>=0

Each sector m has the unique steady state

 $|\bar{P}_L(\mathbf{m})\rangle = |\xi_L(\mathbf{m})\rangle + C|\xi_L(\mathbf{m})\rangle + \dots + C^{L-1}|\xi_L(\mathbf{m})\rangle$

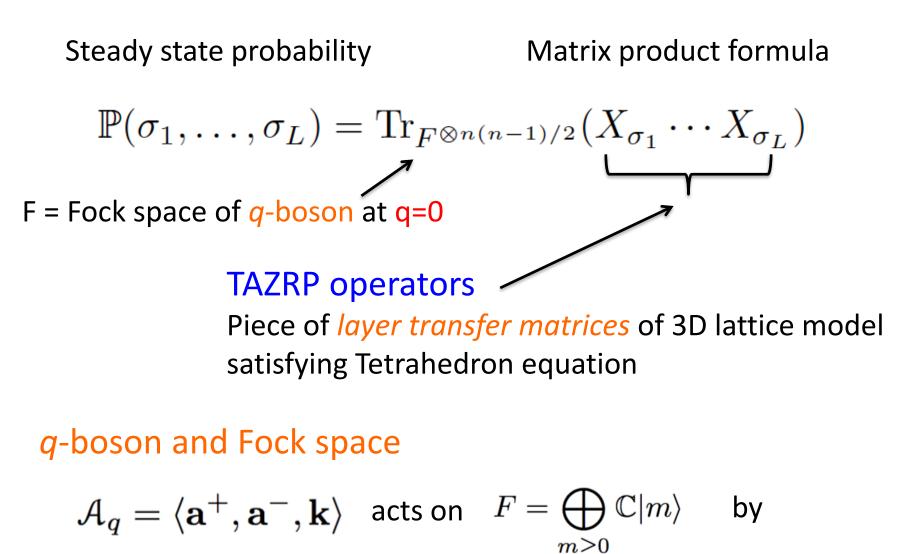
(L = chain length, m = sector, C = cyclic shift)

Example from 3-TAZRP

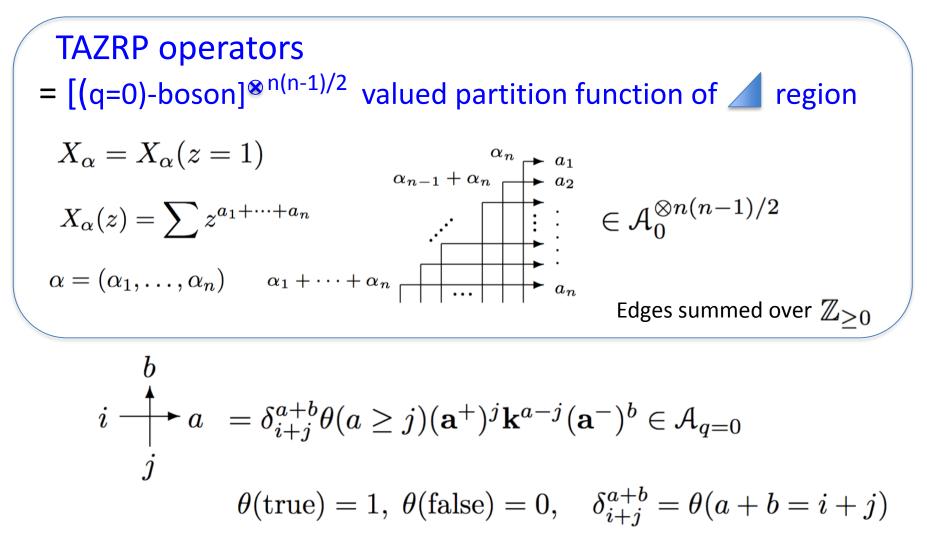
$$\begin{split} |\xi_2(1,1,1)\rangle &= 2|1,23\rangle + |2,13\rangle + 3|3,12\rangle + 6|\emptyset,123\rangle, \\ |\xi_3(1,1,1)\rangle &= 5|1,2,3\rangle + |1,3,2\rangle + 9|\emptyset,1,23\rangle + 3|\emptyset,2,13\rangle + 6|\emptyset,3,12\rangle + 12|\emptyset,12,3\rangle \\ &\quad + 3|\emptyset,13,2\rangle + 3|\emptyset,23,1\rangle + 18|\emptyset,\emptyset,123\rangle, \\ |\xi_4(1,1,1)\rangle &= 17|\emptyset,1,2,3\rangle + 3|\emptyset,1,3,2\rangle + 12|\emptyset,1,\emptyset,23\rangle + 3|\emptyset,2,1,3\rangle + 7|\emptyset,2,3,1\rangle + 8|\emptyset,2,\emptyset,13\rangle \\ &\quad + 9|\emptyset,3,1,2\rangle + |\emptyset,3,2,1\rangle + 20|\emptyset,3,\emptyset,12\rangle + 24|\emptyset,\emptyset,1,23\rangle + 6|\emptyset,\emptyset,2,13\rangle + 10|\emptyset,\emptyset,3,12\rangle \\ &\quad + 30|\emptyset,\emptyset,12,3\rangle + 6|\emptyset,\emptyset,13,2\rangle + 4|\emptyset,\emptyset,23,1\rangle + 40|\emptyset,\emptyset,\emptyset,123\rangle, \\ |\xi_2(2,1,1)\rangle &= 2|1,123\rangle + |2,113\rangle + 3|3,112\rangle + 2|11,23\rangle + |12,13\rangle + 6|\emptyset,1123\rangle, \\ |\xi_3(2,1,1)\rangle &= 3|1,1,23\rangle + 2|1,2,13\rangle + |1,3,12\rangle + 5|1,12,3\rangle + |1,13,2\rangle + 5|2,3,11\rangle + |2,11,3\rangle \\ &\quad + 9|\emptyset,1,123\rangle + 3|\emptyset,2,113\rangle + 6|\emptyset,3,112\rangle + 9|\emptyset,11,23\rangle + 3|\emptyset,12,13\rangle + 3|\emptyset,13,12\rangle \\ &\quad + 3|\emptyset,23,11\rangle + 12|\emptyset,112,3\rangle + 3|\emptyset,113,2\rangle + 3|\emptyset,123,1\rangle + 18|\emptyset,\emptyset,1123\rangle, \end{split}$$

n=1-TAZRP has trivial (uniform) steady states

Main Result



 $\mathbf{a}^+|m\rangle = |m+1\rangle, \quad \mathbf{a}^-|m\rangle = (1-q^{2m})|m-1\rangle, \quad \mathbf{k}|m\rangle = q^m|m\rangle$

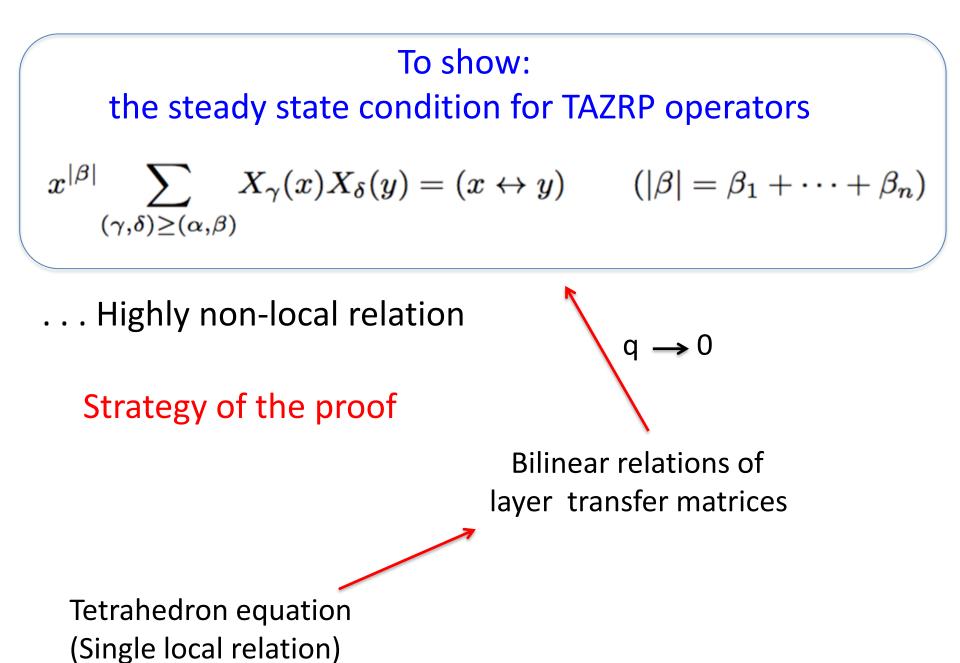


n=2 Example

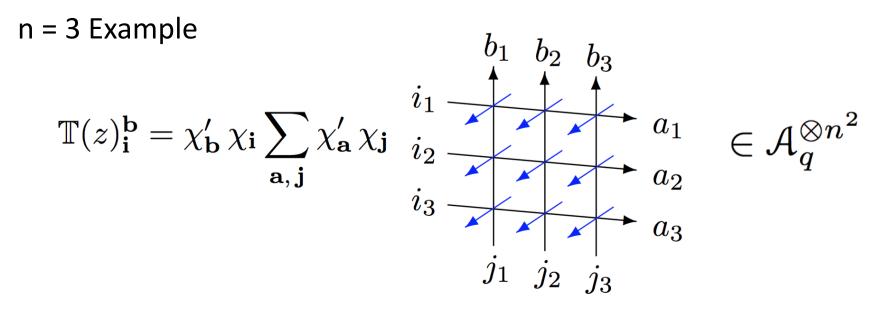
$$X_{\alpha_1,\alpha_2}(z) = \sum_{j\geq 0} z^{\alpha_1+\alpha_2+j} \alpha_1 + \alpha_2 \xrightarrow{\substack{\alpha_2 \\ j}} j + \alpha_1 = z^{\alpha_1+\alpha_2} \sum_{j\geq 0} z^j (\mathbf{a}^+)^j \mathbf{k}^{\alpha_1} (\mathbf{a}^-)^{\alpha_2}$$

To show:
the steady state condition for TAZRP operators
$$x^{|eta|}\sum_{(\gamma,\delta)\geq(lpha,eta)}X_{\gamma}(x)X_{\delta}(y)=(x\leftrightarrow y) \qquad (|eta|=eta_1+\dots+eta_n)$$

... Highly non-local relation



Layer transfer matrix with boundary condition b, i

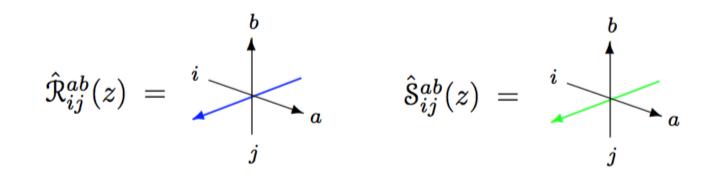


$$\mathbf{a} = (a_1, \dots, a_n), \quad \chi'_{\mathbf{a}} = \prod_{l=1}^n (-q;q)_{a_l}, \quad \chi_{\mathbf{j}} = \prod_{l=1}^n (q;q)_{j_l}^{-1} \quad ext{etc}$$

All black edges except **b**, **i** are summed over $\mathbb{Z}_{>0}$

Each 3D vertex is a q-boson acting on the Fock space on the blue lines

3D R-operators



$$\hat{\mathcal{R}}_{ij}^{ab}(z) = \hat{\mathcal{S}}_{ji}^{ba}(z^{-1}) = \delta_{i+j}^{a+b} \, z^{j-b} \sum_{\lambda+\mu=b} (-1)^{\lambda} q^{\lambda+\mu^2-ib} \binom{i}{\mu}_{q^2} \binom{j}{\lambda}_{q^2} (\mathbf{a}^-)^{\mu} (\mathbf{a}^+)^{j-\lambda} \mathbf{k}^{i+\lambda-\mu}$$

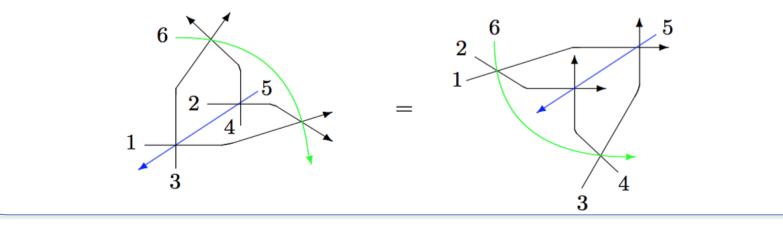
Define 3D R-operators $\mathfrak{R}(z)$, $\mathfrak{S}(z)$: $F \otimes F \otimes F \to F \otimes F \otimes F$ by

$$egin{aligned} &\mathcal{R}(z)ig(ert i
angle\otimesert j
angle\otimesert k
angleig) = \sum_{a,b}ert a
angle\otimesert b
angle\otimes\hat{\mathcal{R}}^{ab}_{ij}(z)ert k
angle\ &\mathcal{S}(z)ig(ert i
angle\otimesert j
angle\otimesert k
angleig) = \sum_{a,b}ert a
angle\otimesert b
angle\otimes\hat{\mathcal{S}}^{ab}_{ij}(z)ert k
angle \end{aligned}$$

Fact (reducible to Kapranov-Voevodsky 1994)

As operators on $F^{\otimes 6}$ the tetrahedron eq. holds: $(z_{ij} = z_i/z_j)$

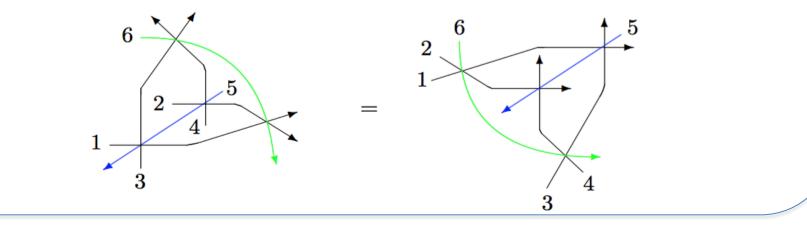
 $\Im(z_{12})_{126}\Im(z_{34})_{346}\Re(z_{13})_{135}\Re(z_{24})_{245} = \Re(z_{24})_{245}\Re(z_{13})_{135}\Im(z_{34})_{346}\Im(z_{12})_{126}$



Fact (reducible to Kapranov-Voevodsky 1994)

As operators on $F^{\otimes 6}$ the tetrahedron eq. holds: $(z_{ij} = z_i/z_j)$

 $\$(z_{12})_{126}\$(z_{34})_{346}\Re(z_{13})_{135}\Re(z_{24})_{245} = \Re(z_{24})_{245}\Re(z_{13})_{135}\$(z_{34})_{346}\$(z_{12})_{126}$



Background and relevant topics:

- Intertwiner of Soibelman's represetations of quantized coordinate ring of SL4
- Transition coefficients of the PBW bases of $U_q^+(sl_3)$

Quantum geometry interpretation (Bazhanov-Mangazeev-Sergeev 2008)

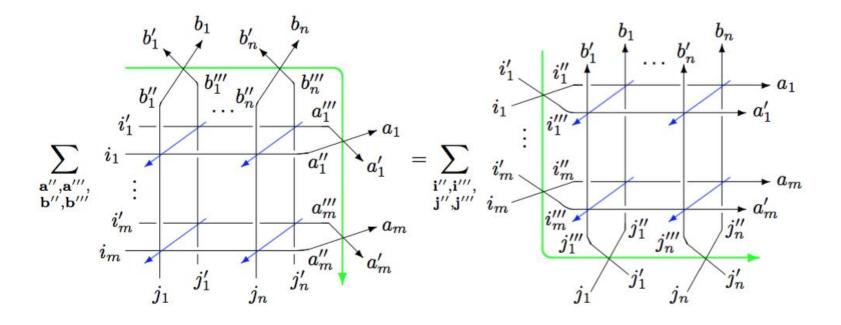
Theorem (Bilinear relation of layer transfer matrices)

$$\sum_{\substack{\mathbf{b},\mathbf{b}',\mathbf{i},\mathbf{i}'\\\mathbf{b}+\mathbf{b}'=\mathbf{s},\,\mathbf{i}+\mathbf{i}'=\mathbf{r}}} x^{|\mathbf{b}|+|\mathbf{i}|} y^{|\mathbf{b}'|+|\mathbf{i}'|} \mathbb{T}(x)_{\mathbf{i}}^{\mathbf{b}} \mathbb{T}(y)_{\mathbf{i}'}^{\mathbf{b}'} = (x \leftrightarrow y)$$

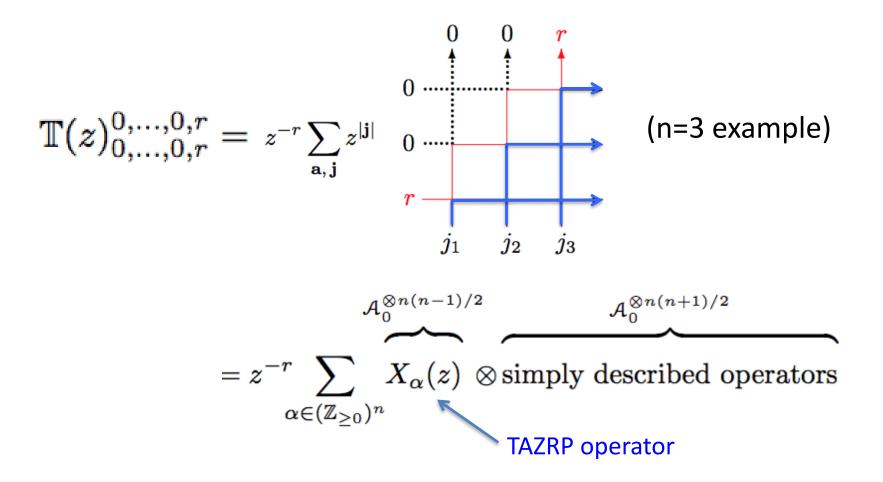
$$\forall \mathbf{s}, \mathbf{r} \in (\mathbb{Z}_{\geq 0})^{n}$$

Generalizes the commutativity corresponding to $\mathbf{s} = \mathbf{r} = (0,...,0)$

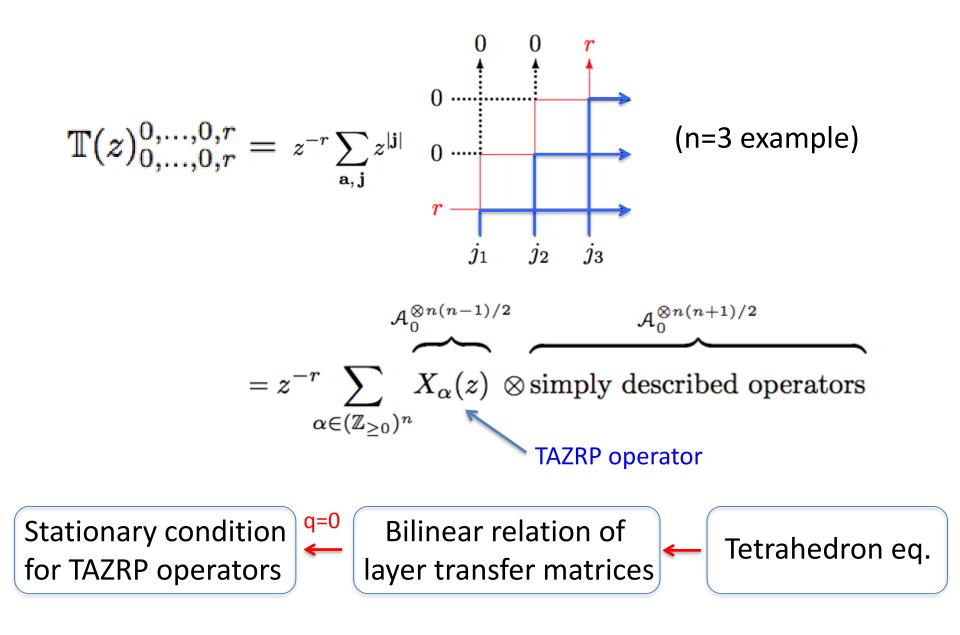
Follows from repeated applications of the tetrahedron eq.



At q=0, Layer transfer matrix is frozen to TAZRP operators



At q=0, Layer transfer matrix is frozen to TAZRP operators



Integrable origin of n-TAZRP

associated with Stochastic R matrix

(K-Mangazeev-Maruyama-Okado, arXiv:1604.08304)

Quantum R matrix in a special gauge satisfying the axioms of Markov matrix

Matrix elements generalize Povolotsky's transition rate for *q*-Hahn process (n=1)

 $\gamma = (1,0,2)$

$$q^{\sum_{1 \le i < j \le n} (\beta_i - \gamma_i)\gamma_j} \left(\frac{\mu}{\lambda}\right)^{\gamma_1 + \dots + \gamma_n} \frac{(\lambda; q)_{\gamma_1 + \dots + \gamma_n} (\frac{\mu}{\lambda}; q)_{\beta_1 + \dots + \beta_n}}{(\mu; q)_{\beta_1 + \dots + \beta_n}} \prod_{i=1}^n \frac{(q; q)_{\beta_i}}{(q; q)_{\gamma_i} (q; q)_{\beta_i - \gamma_i}}$$

Matrix product formula for $U_q(A^{(1)}_2)$ -ZRP (K-Okado, arXiv:1608.02779) (Discrete time Markov process with inhomogeneity μ_1, \ldots, μ_L) $\mathbb{P}(\sigma_1, \ldots, \sigma_L) = \operatorname{Tr}(X_{\sigma_1}(\mu_1) \cdots X_{\sigma_L}(\mu_L)),$ $X_{\alpha}(\mu) = \mu^{-\alpha_1 - \alpha_2} \frac{(\mu; q)_{\alpha_1 + \alpha_2}}{(q; q)_{\alpha_1}(q; q)_{\alpha_2}} \frac{(\mathbf{a}^+; q)_{\infty}}{(\mu^{-1}\mathbf{a}^+; q)_{\infty}} \frac{\mathbf{k}^{\alpha_2}}{(-q\mathbf{k}; q)_{\alpha_1}} (\mathbf{a}^-)^{\alpha_1}$

Matrix product formula for
$$U_q(A^{(1)}_2)$$
-ZRP (K-Okado, arXiv:1608.02779)
(Discrete time Markov process with inhomogeneity μ_1, \ldots, μ_L)
 $\mathbb{P}(\sigma_1, \ldots, \sigma_L) = \text{Tr}(X_{\sigma_1}(\mu_1) \cdots X_{\sigma_L}(\mu_L)),$
 $X_{\alpha}(\mu) = \mu^{-\alpha_1 - \alpha_2} \frac{(\mu; q)_{\alpha_1 + \alpha_2}}{(q; q)_{\alpha_1}(q; q)_{\alpha_2}} \frac{(\mathbf{a}^+; q)_{\infty}}{(\mu^{-1}\mathbf{a}^+; q)_{\infty}} \frac{\mathbf{k}^{\alpha_2}}{(-q\mathbf{k}; q)_{\alpha_1}} (\mathbf{a}^-)^{\alpha_1}$

A q-boson representation of Zamolodchikov-Faddeev algebra

$$X(\mu)\otimes X(\lambda)=\check{\mathbb{S}}(\lambda,\mu)ig[X(\lambda)\otimes X(\mu)ig]$$

U_q(A⁽¹⁾₂) Stochastic R matrix

satisfying an *auxiliary condition*

 $q=0, \mu_i = 0$ case agrees with the tetrahedron result for 2-TAZRP

Concluding remarks

At q=0, a parallel story holds for n-species *Totally Asymmetric Simple Exclusion Process* (n-TASEP)

TAZRP and TASEP correspond to the *two* situations in which type A quantum R matrices are factorized into solutions of the tetrahedron equation as follows:

Tetrahedron:	3D R operator	3D L operator
Yang-Baxter:	R matrix for symm. tensor rep.	R matrix for anti-symm. tensor rep.
Markov process:	n-TAZRP (today's talk)	n-TASEP (arXiv:1506.04490, 1509.09018)