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Key	features	
StochasGc	R	matrix	
StaGonary	states:	matrix	product	structure		
Zamolodchikov-Faddeev	algebra	
Hidden	3D	structure	related	to	the	tetrahedron	equaGon	(no	detail	today)	
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CommuGng	Markov	transfer	matrices	
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ConGnuous	Gme	Markov	Process	(1)	
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ConGnuous	Gme	Markov	Process	(2)	



Contains	many	integrable	stochasGc	models	known	earlier	(taken	from	[Kuan	ArXiv:1701.04468])	
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StaGonary	states	

StaGonary	probability	



in	a	certain	normalizaGon.	
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T	is	the	transfer	matrix	of	a	Yang-Baxter	integrable	lapce	model.	
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Zamolodchikov-Faddeev	algebra	(1)	

	Symbolically	

Originally	introduced	in	integrable	quantum	field	theories	in	(1+1)-dimension.	
Structure	funcGon	in	that	context	=	Scacering	matrix	saGsfying	Unitarity		

Present	context:		Local	form	of	the	staGonary	condiGon	

	Structure	funcGon	=	StochasGc	R	saGsfying	Sum-to-1	
It	is	a	part	of	so-called	RLL	rela3on	
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Zamolodchikov-Faddeev	algebra	(2)	
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Zamolodchikov-Faddeev	algebra	(2)	

.	.	.		a	standard	maneuver	in	dealing	with	the	
quantum	Knizhnik-Zamolodchikov	type	equa7on.	
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One	ApplicaGon	

　 Uq(A(1)
2)	case:		1st	and	2nd	class	of	parGcles	

　 Finitely	many	1st	class	parGcles	fixed	and	regarded	as	defects	
　 Grand	canonical		treatment	of	the	2nd	class	parGcles	with	density	ρ and  µ

　	

d1	d２	 ds	
r	
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Exact	staGonary	density	and	current	profiles	are	obtained		in	
				K	and	Mangazeev,			Density	and	current	profiles	in	Uq(A(1)

2)	zero	range	process,				
																																								Nucl.	Phys.	B922	(2017)	
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At	q=0,	the	present	n-species	zero	range	process	reduces	to		
n-species	Totally	Asymmetric	Zero	Range	Process	(n-TAZRP)	
where	parGcles	obey	a	certain	priority	rule	depending	on	the	species.	



The	3D	approach	in	the	previous	page	provides	yet	another		
matrix	product	formula	for	staGonary	probability	of	the	n-TAZRP.			
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					=	``Corner	transfer	matrix”	of	(q=0)-boson	valued	vertex	models.	
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	=	#	{configuraGons	of	a	3D	lapce	model	on	a	periodic	prism}.	

	This	is	described	in	terms	of		Ferrari-Mar3n	type	algorithm		
	in	terms	of	Crystals	and	Combinatorial	R	of	quantum	groups.	
	



Quite	a	parallel	story	goes	through	for	n-species	TASEP	as	well.	
In	fact,	n-TAZRP	and	n-TASEP	correspond	to	the	two	situaGons	in	
which	the	Uq(A(1)

n)	quantum	R	matrices	are	factorized	into	
soluGons	of	the	tetrahedron	equaGon.	
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Thank	you	!		　お疲れ様でした。　	


