Integrability of box-ball systems: crystals, Bethe ansatz and ultradiscretization

Atsuo Kuniba (Univ. Tokyo)

"Box-Ball Systems from Integrable Systems and Probabilistic Perspectives" CRM Workshop, 22 September 2022

Part 1. Combinatorial Bethe ansatz for n-color BBS (type A case)Part 2. Generalizations from various perspectives

n-color Box-ball system (Takahashi-Satsuma '90, Takahashi '93)

n = 3 example.

 $0 = \text{empty box}, \quad 1, 2, 3 = \text{balls with colors}$

- time evolution = (move 1) \cdot (move 2) \cdot (move 3)
- (move i) · Pick the leftmost ball with color i and move it to the nearest right empty box.
 - \cdot Do the same for the other color i balls.
- soliton=consecutive balls $i_1 \dots i_a$ with color $i_1 \ge \dots \ge i_a \ge 1$.
- velocity=amplitude.

Solvable lattice model at "Temperature 0"

(Hatayama et al '00)

Time evolution pattern

- ··· 0310020000000 ··· ·· 0003102000000 ··· ·· 0000031200000 ···
- $\cdots 000000132000\cdots$
- $\cdots 000000010320\cdots$

emerges from a configuration of a 2D lattice model in statistical mechanics

by forgetting the hidden variables on the horizontal edges.

n-color BBS = solvable vertex model associated with $U_q(\widehat{sl}_{n+1})$ at q = 0. Time evolution = row transfer matrix at q = 0

• Main ingredient = Kerov-Kirillov-Reshetikhin (KKR) bijection (1986).

{highest states} $\stackrel{1:1}{\longleftrightarrow}$ {rigged configurations}

- It asserts "formal completeness" of string solutions of Bethe eq. at a combinatorial level.
- Its unexpected connection to BBS was discovered in (K-Okado-Takagi-Yamada, RIMS-kôkyûroku '03).

• Example. Spin $\frac{1}{2}$ periodic Heisenberg chain

$$H=\sum_{k=1}^L(\sigma_k^x\sigma_{k+1}^x+\sigma_k^y\sigma_{k+1}^y+\sigma_k^z\sigma_{k+1}^z-1)$$

For L = 6 sites in 3 down-spin sector, the Bethe equation reads

$$egin{split} \left(rac{u_1+i}{u_1-i}
ight)^6&=rac{(u_1-u_2+2i)(u_1-u_3+2i)}{(u_1-u_3-2i)(u_1-u_3-2i)},\ \left(rac{u_2+i}{u_2-i}
ight)^6&=rac{(u_2-u_1+2i)(u_2-u_3+2i)}{(u_2-u_1-2i)(u_2-u_3-2i)},\ \left(rac{u_3+i}{u_3-i}
ight)^6&=rac{(u_3-u_1+2i)(u_3-u_2+2i)}{(u_3-u_1-2i)(u_3-u_2-2i)}. \end{split}$$

There should be 5 solutions for the completeness.

- **5** = Kostka number (multiplicity of the irreducible reps. in $(\text{spin } 1/2)^L$)
 - = number of highest states.

Indeed 5 solutions which are approximately described as collection of **strings**

Indeed 5 solutions which are approximately described as collection of strings

Indeed 5 solutions which are approximately described as collection of strings

KKR bijection for sl_{n+1} {highest states} $\xleftarrow{1:1}$ {rigged configurations}

• highest states $= i_1 i_2 \dots i_L$ $(0 \le i_k \le n)$ satisfying the highest condition:

$$\#_0\{i_1,\ldots,i_k\}\geq \#_1\{i_1,\ldots,i_k\}\geq \cdots \geq \#_n\{i_1,\ldots,i_k\} \quad (orall k)$$

• rigged configuration: $((\mu^{(1)}, r^{(1)}), \ldots, (\mu^{(n)}, r^{(n)}))$

 $\left. egin{aligned} \mu^{(1)},\ldots,\mu^{(n)}: ext{configuration} = n ext{-tuple of Young diagrams} \\ r^{(1)},\ldots,r^{(n)}: ext{rigging} = ext{integers assigned to each row} \end{aligned}
ight\} + ext{selection rule (next page)}$

$$egin{aligned} m_i^{(a)} &= \#(ext{length}\ i ext{ rows in } \mu^{(a)}), \ \sum_{i\geq 1} i m_i^{(a)} &= |\mu^{(a)}| \ 0 &\leq r_1 \leq \cdots \leq r_{m_i^{(a)}} \leq p_i^{(a)} \ \cdots ext{``Fermionic'' selection rule} \ p_i^{(a)} &= L \delta_{a,1} - \sum_{b=1}^n C_{ab} \sum_{j\geq 1} \min(i,j) m_j^{(b)} \ \cdots ext{ vacancy for } holes \ C_{ab} &= 2 \delta_{ab} - \delta_{a,b+1} - \delta_{a,b-1} \ (C_{ab}) \ \cdots \ ext{ Cartan matrix of } sl_{n+1} \end{aligned}$$

 $\# \text{ of rigging choices for a fixed configuration} = \prod_{a=1}^{n} \prod_{i \ge 1} \left(\begin{array}{c} p_i^{(a)} + m_i^{(a)} \\ m_i^{(a)} \end{array} \right) \quad \stackrel{\leftarrow \text{ called}}{\leftarrow \text{ called}}$

This is an sl_{n+1} generalization of Bethe's formula for # of string solutions (1931).

H. Bethe,

hat also eine Möglichkeit weniger, die des letzten Komplexes von n Wellen, λ_{q_n} , kann schließlich nur noch

$$Q'_n - (q_n - 1) = Q_n + 1$$

verschiedene Werte annehmen, wo

$$Q_n(N, q_1 q_2 \ldots) = N - 2 \sum_{p < n} p q_p - 2 \sum_{p \ge n} n q_p.$$
(44)

Schließlich ist zu berücksichtigen, daß Vertauschung der λ der verschiedenen Wellenkomplexe mit gleicher Anzahl n von Wellen nicht zu neuen Lösungen führt. Die gesamte Zahl unserer Lösungen wird somit

$$z(N, q_1 q_2 \dots) = \prod_{n=1}^{\infty} \frac{(Q_n + q_n) \dots (Q_n + 1)}{q_n!} = \prod_n \binom{Q_n + q_n}{q_n}, \quad (45)$$

wo die Q_n durch (44) definiert sind.

8. Wir werden nun nachweisen, daß wir die richtige Anzahl Lösungen erhalten haben. Example of KKR algorithm

Top left rigged configuration $\stackrel{\text{KKR}}{\mapsto}$ 00121021

How does the BBS dynamics look like in terms of rigged configurations ?

- Configuration is conserved (action variable)
- Rigging flows linearly (angle variable)
- KKR bijection linearizes the dynamics (direct/inverse scattering map)

Rigged configuration = action angle variable of BBS!

In particular, $\mu^{(1)} =$ list of amplitude of solitons.

(Remark: meaning of $\mu^{(2)}, \mu^{(3)}, \ldots$ is implicit, hence not democratic.)

Lascoux-Schützenberger charge in KKR theory

UD tau function

$$au_{k,i} = -\min_{(
u,s)} \{ c(
u,s) + |
u^{(i)}| \} \hspace{0.4cm} (k \! \geq \! 1, \, 1 \! \leq \! i \! \leq \! n)$$

 $\min_{(
u,s)}: ext{ over all subsets } (
u,s) \subseteq (\mu,r) ext{ with }
u^{(0)} = (\mu_1^{(0)},\ldots,\mu_k^{(0)}).$

Th. (K-Sakamoto-Yamada '07)

 $\tau_{k,i}$ admits the following characterizations:

- (1) UD of tau functions for KP hierarchy
- (2) "corner transfer matrix" of box-ball system

$$egin{aligned} (1) & au_{k,i} = \lim_{\epsilon o 0} \epsilon \log \ \langle i | \exp \Bigl(\sum_j c_j \psi(p_j) \psi^*(q_j) \Bigr) | i
angle \ & (c_j,p_j,q_j) \longleftrightarrow \ ext{ strings in rigged configuration} \end{aligned}$$

Corollary of (1). (UD Hirota bilinear eq.)

$$ar{ au}_{k,i-1} + au_{k-1,i} = \max(ar{ au}_{k,i} + au_{k-1,i-1},ar{ au}_{k-1,i-1} + au_{k,i} - \mu_k^{(0)})$$

 $ar{ au}_{k,i} = au_{k,i} \,\, ext{associated with} \,\, T_\infty((\mu,r))$

(2) Suppose $b_1 b_2 \cdots b_L \stackrel{\mathrm{KKR}}{\longleftrightarrow} (\mu, r) \longrightarrow \{\tau_{k,i}\}$. Then,

•••• "analogue" of Baxter's corner transfer matrix

UD Hirota bilinear = eq. of motion of box-ball system.

Corollary of (1)&(2).

• piecewise linear formula for KKR map: $(\mu, r) \stackrel{\text{KKR}}{\longmapsto} b_1 \dots b_L$

semistandard tab. $b_k = (\overbrace{1 \dots 1}^{x_{k,1}} \dots \overbrace{n \dots n}^{x_{k,n}})$ is specified by

$$x_{k,i}= au_{k,i}- au_{k-1,i}- au_{k,i-1}+ au_{k-1,i-1}.$$

• general N soliton solution of *n*-color BBS with arbitrary inhomogeneous box capacities

	Bethe ansatz	Corner transfer matrix
main combinatorial object	rigged configuration	charge (energy) in affine crystal
role in box-ball system	action-angle variable	tau function
dynamics	linear	bilinear

Part 2 Generalizations from various perspectives

 $\hat{\mathfrak{g}}_n$ -BBS (Hatayama-K-Takagi '00, HK-Okado-T-Yamada '02)

- formulated by KR crystals of $\hat{\mathfrak{g}}_n = A_{2n-1}^{(2)}, A_{2n-1}^{(2)}, B_n^{(1)}, C_n^{(1)}, D_n^{(1)}, D_{n+1}^{(2)}$
- Commuting time evolutions $T_1, T_2, \ldots, T_{\infty} =: T$ and associated energies E_1, E_2, \ldots
- Particle/anti-particle system with pair creation/annihilation via a bound state
- Solitons exhibiting factorized scattering with S-matrix = combinatorial R of \hat{g}_{n-1}

<u>Th.</u> $T = \text{translation in extended affine Weyl group} = (Dynkin auto) \prod (simple reflection)$

Signature rule for the simple reflection S_i in Weyl group

= Pitman's transformation up to gauge $A_n^{(1)}$ case: S_i corresponds, up to gauge, to moving balls with a specific color.

move $2 \mod 3$

Example.
$$A_2^{(1)} = \hat{sl}_3$$
 $T = \sigma S_2 S_0$
 $1 = \frac{1}{2} = \frac{1}{2} = \frac{1}{3}$
 $S_0 = \int_{-(+(++-)}^{1} \frac{1}{(+-)} + \frac$

 $s_i = \text{simple reflection within each component.}$ $(s_i^2 = 1)$

0-sgn

Example. $D_4^{(1)} = \hat{so}_8$

empty box1234particlebound state
$$\overline{1}$$
 $\overline{2}$ $\overline{3}$ $\overline{4}$ anti-particle

 $T = K_2 K_3 K_4 K_{\overline{4}} K_{\overline{4}} K_{\overline{3}} K_{\overline{2}} \quad \left(\longleftarrow T = \sigma S_0 S_2 S_3 S_4 S_2 S_0, \quad \sigma : 1 \leftrightarrow \overline{1}, \ 4 \leftrightarrow \overline{4} \right)$

Algorithm for K_j

- (1) Replace $\overline{1}$ by a pair j, \overline{j} within a box.
- (2) Move the leftmost j (if any) to the nearest right box which is empty or containing just \overline{j} .
- (3) Repeat (2) until all j is moved once.
- (4) Replace a pair j, \overline{j} by $\overline{1}$ within a box.

Propagation of particle 2 exhibiting pair creation/annihilation with anti-particle $\overline{2}$ via a bound state $\overline{1}$.

Usual (type A) BBS corresponds to the special sector free from anti-particles.

Th.

(1)
$$\lim_{\ell \to \infty} \left(\begin{array}{c} \text{Transfer matrix of } U_q(\widehat{sl}_2) \text{ vertex model} \\ \text{in an asymptotic domain} \end{array} \right)$$

= Quantized T in the previous page

$$T(|b\rangle) = \sum_{c} A_{b,c} |c\rangle \quad (|b\rangle = |\dots b_{i-1}b_{i}b_{i+1}\dots\rangle, \ |c\rangle = |\dots c_{i-1}c_{i}c_{i+1}\dots\rangle)$$
(2) The amplitude satisfies $\sum_{d} A_{bd}A_{cd} = \delta_{bc}$ (orthogonality), $\sum_{c} A_{bc} = 1$ ('linear norm' preserving).
Example $|b\rangle = |\dots \circ \circ \circ \circ \circ \circ \circ \cdots \rangle$
 $(A_{bd})^{2} \qquad (-q)^{4} \qquad (-q)^{2} \sum_{k \ge 0} (q^{k})^{2}(1-q^{2})^{2} = q^{2}(1-q^{2})$
 $\vdots \qquad (-q)^{2} \sum_{k \ge 0} (q^{k})^{2}(1-q^{2})^{2} = q^{4}(1-q^{2})$
 $\vdots \qquad (-q^{2})^{2} \sum_{k \ge 0} (q^{k})^{2}(1-q^{2})^{2} = q^{4}(1-q^{2})$
 $\vdots \qquad (-q^{2})^{2} \sum_{k \ge 0} (q^{2k_{1}+k_{2}})^{2}(1-q^{2})^{2}(1-q^{4})^{2} = (1-q^{2})(1-q^{4})$

BBS with reflecting end (K-Okado-Yamada '05)

Idea

(1) Take the local states from $B_1 \otimes B_1^{\vee}$ (B_1 : vector rep., B_1^{\vee} : anti-vector rep.)

(2) Time evolution = double row transfer matrix at q = 0involving **combinatorial** K, which satisfies the combinatorial reflection equation KRKR = RKRK.

Double row transfer matrix in crystal setting

Solitons at the boundary satisfy the reflection equation

111				$1\overline{2}$	$1\overline{3}$					$1\overline{2}$	$1\overline{2}$	$1\overline{3}$	
111		$1\overline{2}$	$1\overline{3}$				$1\overline{2}$	$1\overline{2}$	$1\overline{3}$				
113	$1\overline{3}$			$1\overline{2}$	$1\overline{2}$	$1\overline{3}$							
113	$2\overline{2}$	$1\overline{2}$	$1\overline{3}$										
133	$4\overline{4}$	$2\overline{4}$											
113	$2\overline{4}$		$3\overline{4}$	$3\overline{4}$	$2\overline{4}$								
111		$3\overline{4}$	$2\overline{4}$			$3\overline{4}$	$3\overline{4}$	$2\overline{4}$					
111				$3\overline{4}$	$2\overline{4}$				$3\overline{4}$	$3\overline{4}$	$2\overline{4}$		
111						$3\overline{4}$	$2\overline{4}$					$3\overline{4}$	$3\overline{1}$
111								$3\overline{4}$	$2\overline{4}$		$1\overline{2}$	$1\overline{2}$	$1\overline{3}$
111									$4\overline{2}$	$3\overline{3}$			
111						$1\overline{2}$	$1\overline{2}$	$1\overline{3}$			$3\overline{4}$	$2\overline{4}$	
111			$1\overline{2}$	$1\overline{2}$	$1\overline{3}$								$3\overline{1}$
113	$1\overline{2}$	$1\overline{3}$										$1\overline{2}$	$1\overline{3}$
133	$2\overline{4}$									$1\overline{2}$	$1\overline{3}$		
111		$3\overline{4}$	$3\overline{4}$	$2\overline{4}$				$1\overline{2}$	$1\overline{3}$				
111					$3\overline{4}$	$3\overline{1}$	$1\overline{3}$						
111					$1\overline{2}$	$1\overline{3}$	$3\overline{4}$	$3\overline{4}$	$2\overline{4}$				
111			$1\overline{2}$	$1\overline{3}$						$3\overline{4}$	$3\overline{4}$	$2\overline{4}$	
111	$1\overline{2}$	$1\overline{3}$										$1\overline{1}$	$3\overline{2}$
123										$1\overline{2}$	$1\overline{2}$	$1\overline{3}$	
111	$3\overline{4}$	$2\overline{4}$					$1\overline{2}$	$1\overline{2}$	$1\overline{3}$				
111			$3\overline{4}$	$2\overline{2}$	$1\overline{2}$	$1\overline{3}$							
111		$1\overline{2}$	$1\overline{2}$	$4\overline{4}$	$2\overline{4}$								
133	$1\overline{3}$					$3\overline{4}$	$2\overline{4}$						
113	$3\overline{4}$	$2\overline{4}$						$3\overline{4}$	$2\overline{4}$				
111			$3\overline{4}$	$3\overline{4}$	$2\overline{4}$					$3\overline{4}$	$2\overline{4}$		

Complete BBS for $\widehat{sl}_n \ (n \ge 3)$

complete set of fundamental $T_{\ell}^{(k)}$ representations are built in Traditional (n-1)-color BBS (Takahashi '93) Complete BBS (K-Misguich-Pasquier '21) $1 \otimes \begin{bmatrix} 1 \\ 2 \end{bmatrix} \otimes \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \otimes 1 \otimes \begin{bmatrix} 1 \\ 2 \end{bmatrix} \otimes \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \otimes \cdots \quad (\leftarrow n = 4 \text{ case})$ Vacuum \otimes $T^{(k)}_{\ell} \ \forall k, \ell$ $T_{\ell}^{(1)}$ only Dynamics \widehat{sl}_{n-1} -crystal $(k, \ell) \in \{1, ..., n-1\} \times \mathbb{Z}_{>1}$ Solitons combinatorial R of \widehat{sl}_{n-1} **Diagonal** $(\rightarrow \text{GHD})$ S-matrix every part is directly higher-color part has Rigged conf. connected to solitons. implicit meaning. Complete democracy achieved! Y(^,^)Y

Solitons undergo the phase shift only

Any state splits into solitons after enough time evolutions

Successive collisions of $S_3^{(3)}$ with $S_1^{(1)}$ and $S_2^{(2)}$ under the time evolution $T_l^{(3)}$ with $l \ge 3$.

,	, 12	, 12	, 12	,	,	,	,	, 12	,	,	, 12	, 12	,	,	,	,	,	,	,	,	,
	124	124	124	1	1	1		223			133	133									
,	,	,	,	$, 12 \\ 124$	$, 12 \\ 124$	$, 12 \\ 124$,	$, \begin{array}{c} 12\\ 223 \end{array}$, :	,	$, 12 \\ 133$	$, 12 \\ 133$,	,	,	,	,	,	,	,	,
,	,	,	,	,	,	,	, $\begin{array}{c}1\\12\\124\end{array}$	$, \begin{smallmatrix}1\\12\\224\end{smallmatrix}$	$, \begin{array}{c} 1\\ 12\\ 124 \end{array}$,	, $\begin{array}{c}1\\12\\133\end{array}$, $\begin{array}{c}1\\12\\133\end{array}$,	,	,	,	,	,	,	,	,
,	,	,	,	,	,	,	,	, $\begin{array}{c}1\\12\\223\end{array}$,	$, 12 \\ 124$	$, \begin{smallmatrix}1\ 12\\144\end{smallmatrix}$, $\begin{array}{c}1\\12\\133\end{array}$,	,	,	,	,	,	,	,	,
,	,	,	,	,	,	,	,	, $\begin{array}{c}1\\12\\223\end{array}$,	,	,	$, \begin{array}{c}1\ 13\\144\end{array}$	$, 12 \\ , 124 \\ 124$,	,	,	,	,	,	,	,
,	,	,	,	,	,	,	,	$, \begin{smallmatrix}&1\\&12\\&223\end{smallmatrix}$,	,	,	,	$, 12 \\ , 133 \\$	$, 12 \\ 134$	$egin{array}{cccc} 1 & 1 \ 2 & 12 \ 4 & 124 \ \end{array}$	$1 \\ 2, 12 \\ 124$	2,	,	,	,	,
,	,	,	,	,	,	,	,	, $\begin{array}{c}1\\12\\223\end{array}$, :	,	,	,	$, \begin{array}{c} 1\\ , 12\\ 133 \end{array}$	$, 12 \\ 13$	L 2, 3	,	$, \ 12 \\ , \ 124 \\$	$^{1}_{12}, 12$	$, \begin{array}{c} 1\\ 12\\ 124 \end{array}$,	,

Duality with combinatorial Yang's system

$$\begin{array}{cccc} & & & & & & & \\ & & & & & \\ & & & & \\ & & &$$

Translations in extended affine Weyl groups

$$\begin{aligned} \mathcal{T}_{a} &= \sigma S_{a+1} \cdots S_{a+n} \quad \mathcal{T}_{a} \mathcal{T}_{b} = \mathcal{T}_{b} \mathcal{T}_{a} \\ \mathcal{Y}_{k} &= R_{k-1} \cdots R_{1} P R_{L-1} \cdots R_{k} & \text{dynamics symmetry} \\ &= \cdots + \cdots + + + + + \cdots + + \cdots & \text{dual picture } \mathcal{T}_{a} \text{'s } \mathcal{T}_{a} \text{'s } \mathcal{Y}_{k} \text{'s } \\ \mathcal{Y}_{k} \mathcal{Y}_{\ell} &= \mathcal{Y}_{\ell} \mathcal{Y}_{k} \quad (\text{Yang '67}) & \text{Yang's system } \mathcal{Y}_{k} \text{'s } \mathcal{T}_{a} \text{'s } \end{aligned}$$

Combinatorial Yang's dynamics on $B_4 \otimes B_3 \otimes B_2 \otimes B_1$

For *periodic* BBS, stories are even more intriguing.

Review: Inoue-K-Takagi '12

A.K. "Bethe Ansatz and Combinatorics" (2011) (monograph in Japanese, contents in English visible at http://webpark1739.sakura.ne.jp/atsuo/Contents.pdf)