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Key to integrability in 2D

Yang-Baxter equation Reflection equation
R12R13R23 = RazRi3Ri Ro1 KoR1o K1 = K1 Ro1 Ko Ryo

L

R : 2 particle scattering K : Reflection at boundary
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What about 3D?

Tetrahedron equation (A.B. Zamolodchikov, 1980)

R:FRFRF >3 FQF®F (3D R)
R123 R145 Ro46 R356 = R356 Roa6 R145 R123
2 2
4 3 1
4

6
B { 3 string scattering amplitude in (2+1)D

local Boltzmann weight of the vertex in 3D
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Status of finding solutions and relevant maths

Yang-Baxter eq. (2D)

@ Infinitely many solutions constructed systematically by representation
theory of the Drinfeld-Jimbo quantum affine algebra U, (&)
(& = affine Kac-Moody algebra).
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Status of finding solutions and relevant maths

Yang-Baxter eq. (2D)

@ Infinitely many solutions constructed systematically by representation
theory of the Drinfeld-Jimbo quantum affine algebra U, (&)
(& = affine Kac-Moody algebra).

Tetrahedron eq. (3D)

@ A few classes of solutions are known.

@ Systematic framework yet to be developed.
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Status of finding solutions and relevant maths

Yang-Baxter eq. (2D)

@ Infinitely many solutions constructed systematically by representation
theory of the Drinfeld-Jimbo quantum affine algebra U, (&)
(& = affine Kac-Moody algebra).

Tetrahedron eq. (3D)

@ A few classes of solutions are known.
@ Systematic framework yet to be developed.

@ One such approach is by quantized algebra of functions A,4(g)
(g = finite dimensional simple Lie algebra).

e Ag4(g) is the quantum group corresponding to the dual of Uy(g).
Studied by Drinfeld (87), Vaksman-Soibelman (89,91),
Reshetikhin-Takhtajan-Faddeev (90), Noumi-Yamada-Mimachi (92),
Kashiwara (93), Yakimov (2010), Geiss-Leclerc-Schréer (2011-) etc.
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o Simplest example:

t11 ti2
Sk = | [tij, t] =0, tinton — tiotor =1 .
tr1 t
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o Simplest example:

t11 ti2
Sk = | [tij, t] =0, tinton — tiotor =1 .
tr1 t

Aq(sh) is generated by ti1, ti2, to1, too with the relations

ti1to1 = qto1t11, tiotop = qtootio, ti1tio = qtiotin, to1ton = qtootos,

[tio, 1] =0, [t11,t0] = (g — qfl)t21t127 tiitor — qtiotr; = 1.

Hopf algebra with coproduct At = >, tix ® ty;.
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o Simplest example:

t t
Sly, = {( 1 12) | [tij, t] = 0, tinton — tiotor = 1}-

t1 122
Aq(sh) is generated by ti1, ti2, to1, too with the relations
tintor = qtortin, tiotox = qiootin, tirtio = qtintin, 1t = gixntog,
[ti2, t21] =0, [t11,t22] = (9 — ¢ Dtortiz, taiteo — qtiotor = 1.
Hopf algebra with coproduct At =", ti ® t;.
o Fock representation 71 : Aq(sl2) — End(Fq)
Fqg = ®m>0C|m) : g-boson Fock space
t t a k
(o) Co o)
klm) = ¢™|m), a*|m) = [m+1), a”|m) = (1 — ¢°™)|m — 1).
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Theorem (Classification of irreducible representations. Soibelman 1991)
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Theorem (Classification of irreducible representations. Soibelman 1991)

@ Irreducible reps. &L elements of the Weyl group W(g)
(up to a “torus degree of freedom” ).
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Theorem (Classification of irreducible representations. Soibelman 1991)

@ Irreducible reps. &L elements of the Weyl group W(g)
(up to a “torus degree of freedom” ).

Set 7r; := the irreducible rep. for the simple reflection s; € W(g)
(i : a vertex of the Dynkin diagram of g).
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Theorem (Classification of irreducible representations. Soibelman 1991)
@ Irreducible reps. &L elements of the Weyl group W(g)
(up to a “torus degree of freedom” ).
Set 7r; := the irreducible rep. for the simple reflection s; € W(g)
(i : a vertex of the Dynkin diagram of g).

@ The irreducible rep. corresponding to the reduced expression
sy -+ si, € W(g) is realized as the tensor product mj ® -+ ® ;..
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Theorem (Classification of irreducible representations. Soibelman 1991)
@ Irreducible reps. &L elements of the Weyl group W(g)
(up to a “torus degree of freedom” ).
Set 7r; := the irreducible rep. for the simple reflection s; € W(g)
(i : a vertex of the Dynkin diagram of g).

@ The irreducible rep. corresponding to the reduced expression
sy -+ si, € W(g) is realized as the tensor product mj ® -+ ® ;..

Crucial Corollary

If s;---s;, =sj ---s; are 2 different reduced expressions, then

—> Exists the unique map ® called intertwiner such that
(mh @ @m,)od=bo(r, ® - ®7j)
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Example

Aq(shk) = <tU>?J:1 O—0O

Fock representations ™ T
t11 tip t13 a k O 1 0 0
thr1 tn tz ]| — | —qk at 0 R 0 a- k
t31 t3» 133 0 0 1 0 —qk at
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Example

1 2

Aq(shk) = <tU>?J:1 O—0O

Fock representations ™ T
t11 tip 113 a k O 1 0 0
thr1 tn tz ]| — | —qk at 0 R 0 a- k
t31; t3p 133 0 0 1 0 —qgk at
W(sh) = (s1, ). 2515 = s15251 (Coxeter relation)

— mMROMT QM 2T ® T @ T as representations on (Fq)®3

Exists the intertwiner @ : (F,)®3 — (F;)®* such that
(Ma@m ®@m)od =do(m ®m ).
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Explicit form
R:=®P13, P3(x®y®z)=z0yQXx,
R(Ii) @ |j) ® k) =Y Ri<la) ® |b) @ |c).

abc

lell(ac = Sitjiar b0k bic Z (_1)/\qi(c—j)+(k+1)>\+u(,u—k)
Ap>0,A+p=b
IJ,c+p
X X ) .
/'L7)\7/ — M, J _)\7C

O et

= Jiseeods
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Example

R = —*(1— g*)(1 - ¢°)(1— ¢®),
Riti = (1-¢°)(1 - a*)(1-¢* —¢° = ¢° — ¢'°),
R¥: = 1+ a1+ )1 - ¢®)(1 — ¢° — ¢'°),
R3 =q®(1+q?+ ¢* — ¢® — q** — g2 — ¢*%)

405 _ 12
R3iz = g™

)

As these examples indicate, all the matrix elements of R are polynomials
in g with integer coefficients.
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Example

R = —*(1— g*)(1 - ¢°)(1— ¢®),
Riti = (1-¢°)(1 - a*)(1-¢* —¢° = ¢° — ¢'°),
R¥: = 1+ a1+ )1 - ¢®)(1 — ¢° — ¢'°),
R3 =q®(1+q?+ ¢* — ¢® — q** — g2 — ¢*%)

405
R3is =q

)

As these examples indicate, all the matrix elements of R are polynomials
in g with integer coefficients.

Furthermore, for any (i,j, k) € Z320, there is a unique (a, b, ¢) such that

abc
Uk ‘q 0_1

This property will be utilized later to define the tropical 3D R.
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Theorem (Kapranov-Voevodsky 1994)

R satisfies the tetrahedron eq. Ri23R145R246R356 = R356 RoaeR145R123.
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Theorem (Kapranov-Voevodsky 1994)
R satisfies the tetrahedron eq. R123R145R246R356 = R356 Ro46R145R123.

Essence of proof. Consider Ay(sls) and W(sl) = (s1, s, s3).
525152 = 515251, 535253 = 525352, 5153 = 5351,

S15253515251 = S3es3515253 (longest element)

The intertwiner for the last one is constructed in 2 different ways as

123121 D456 123121 P34
123212 o3 121321 P13
132312 ProFPys 212321 ®3ys
312132 o3y 213231 Px3Psg
321232 ®y56 231213 D35
321323 Py, 232123 ®yp3
323123 323123

Equate the 2 sides, substitute ®; = RjjPjx and cancel Pj's. U]
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Summary so far (type A case)

Weyl group elements <— “Multi-string states”
Cubic Coxeter relation «+— 3D R
Reduced words for longest element «— Tetrahedron equation
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Summary so far (type A case)

Weyl group elements <— “Multi-string states”
Cubic Coxeter relation «+— 3D R
Reduced words for longest element «— Tetrahedron equation

Remark

(1) 3D R = "Quantization” of Miquel's theorem (1838)
(Bazhanov-Sergeev-Mangazeev 2008)
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Summary so far (type A case)

Weyl group elements <— “Multi-string states”
Cubic Coxeter relation «+— 3D R
Reduced words for longest element «— Tetrahedron equation

Remark

(1) 3D R = "Quantization” of Miquel's theorem (1838)
(Bazhanov-Sergeev-Mangazeev 2008)

(2) Tropical (or combinatorial) analogue.

(3) Birational (or classical) analogue.

The next 3 pages demonstrate (2) and (3), which will lead to a Triad of
the 3 versions of 3D Rs.
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Tropical 3D R

Easy to show R,-J-k

abe| o — 5;?+bfmin(a,C)5;nin(a,c)5b+c7min(a,c)

k .

So the tropical 3D R R := R|4—0: Z320 — Z320 defined by
R(a, b,c) = (a+ b — min(a, c),min(a, c), b+ c —min(a, c))

satisfies the tropical tetrahedron eq. (equality as maps on ZGZO) :

Rz

1132516)
Riss |
1532156)

Rose |
1512354)

R3s6 ™\

314516)

1515327)

¢ Rase

1311543)
1 Roge

1351147)
1 Rugs

1151327)

v Ri23
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Birational 3D R

For the matrices generating a unipotent subgroup of SL3

)

1
Gl(Z) = 0
0

O~ N

0 1
0 y G2(Z) =10
1 0

o = O

0
V4
1
the unique solution to the Lusztig type equation

Gl(a) Gg(b) Gl(C) = Gg(é) Gl(B) GQ(CNT)

defines a birational map on 3 variables which we call birational 3D R:

Ri(a,byc)'_)(a7575): <aj{)C’ ate, at_):c) ’

Its tropical limit reproduces the Tropical 3D R introduced before:

R: (a,b,c)— (a+ b—min(a,c),min(a, c), b+ ¢ — min(a, c)).
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Summary: Triad of 3D R

classical limit low temperature limit
Quantum R | ——— Tropical R ~— | Birational R
Intertwiner of Bijection on Birational map on
Aq(sh) modules Zs’zo C3

All satisfying the tetrahedron equation.
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Recent developments

@ Type B, C, F4 cases: 3D analogue of reflection equation.
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Recent developments

@ Type B, C, F4 cases: 3D analogue of reflection equation.

@ Connection to the Poincaré-Birkhoff-Witt basis of U, (g).

Atsuo Kuniba (University of Tokyo) Tetrahedron equation, 3D reflection equation



Recent developments

@ Type B, C, F4 cases: 3D analogue of reflection equation.
@ Connection to the Poincaré-Birkhoff-Witt basis of U, (g).

@ Reduction to 2D YBE: Infinitely many quantum R matrices associated
with generalized quantum groups.
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Recent developments

@ Type B, C, F4 cases: 3D analogue of reflection equation.
@ Connection to the Poincaré-Birkhoff-Witt basis of U, (g).

@ Reduction to 2D YBE: Infinitely many quantum R matrices associated
with generalized quantum groups.

@ Application to matrix product stationary states in integrable Markov
processes such as totally asymmetric exclusion/zero-range processes.

Today in what follows:  Mainly and will touch only briefly.
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Aqg(G3) = ( ,J>,J 1. (Reshetikhin-Takhtajan-Faddeev 1990)

O—O&=0 mk(t;j) are given as follows.
Fq Fq Fg2

a- k 00 O O 1 0 0 0 o0 O
—gk a~ 00 0 O 0 a= k 0O 0 O
o 0 0 10 0 O - 0 —gk av* 0 0 O
"l o o010 of ™o 0 0 a -k O
0 0 0 0 a -k 0 O 0 gk at 0
0 0 0 0 gk a* 0 O 0 0 0 1

10 0 0 0O

01 0 0 0O

0 0 A™ K 00
T3 0 0 —q2K At 0 o’ <Ai K> - <a >|q—>q

0 0 0 0 10

0 0 0 0 01
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W(G) = (s1,%2,53)

S$153 = 5351, S15251 = 525152, S2535253 = S$35253S2.

Write simply as 7 =7, ® --- @ m;,. Then,

Equivalence Intertwiner

T3 =~ 731, P12(X ® y) =y X, (trivial)

12

m121 =~ 12, P = RPi3 (Same as type A),

T2323 == T332, W = KP14P23 (new).

K e End(Fp © Fy® Fp © Fy), R € End(FE3).
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Matrix elements
K(la) @ i) @ |b) @1j)) KSTErc) @ |m) @ |d) @ |n).
J alb_/

c,m,d,n

KCTET_O unless c+m+d = a+i+b, d+n—c=b+j—-a

a
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Matrix elements
K(la) @ i) @ |b) @1j)) KSTEe) @ |m) @ |d) @ |n).
J ale

c,m,d,n

KSTEP =0 unless c+m+d = a+i+b, d+n—c=b+j—a.

a

Prop. (K-Okado '12, A more structural formula in K-Maruyama '15)

Kcvfnvoa_n — Z(_l)m+)\(q4)c+>\ q¢2 I7J
a,i,0, Z (7%)< ANj=Am=Xi—m+A|’
(a—l—c—i—l)(m—H 2\)+m—j.
cmdn __ (q )a Z ( 1)a+7 o1 Ka,i+b—a—,3—%0,j+b—a—5—7
aibj — (¢%) (6*)d c,m+d—a—pB—~,0,n+d—a—B—
€ a,8,720 —#
« bad757i+bia7ﬁaj+biaiﬁ
O‘aﬁu’}/am_aan_O[7b_a_ﬁad_ﬁ_’y
é1 = a(a+2d—28—1)+(28—d)(m+n+d)+~v(y—1)—b(i-+j+b).
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Example
Kiiio = q°(1 - ),
Ksiio = —a*(1—¢° +q'),
Kstto = —a°(1+¢°)(1— ¢* + ¢* — ¢° — ¢'),
Ko =1-q° +q*
K3ie = —a"°(1— g+ *) 1+ g+,

4003 4
Koo = g7
Properties
o VK € Z]q), K q=0 € {0,1},

e Forany (i,j,k,1) € Z‘éo, there is unique (a, b, ¢, d) € Zéo such that

abcd
Uk/ ‘q o=1
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Theorem (K-Okado 2012)

R and K yield the first nontrivial solution to the 3D reflection equation
proposed by Isaev-Kulish in 1997:

Ragg K3579 Rogo Rosg K1678 K1234 Res4 = Resa K1234 K1678 Ro58 Rog9 K3579 Ragg.
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Theorem (K-Okado 2012)
R and K yield the first nontrivial solution to the 3D reflection equation
proposed by Isaev-Kulish in 1997:

Ragg K3579 Rogo Rosg K1678 K1234 Res4 = Resa K1234 K1678 Ro58 Rog9 K3579 Ragg.

® An equality in End(F . ® Fg® Fpe ® Fg @ Fq® Fq @ Fo @ Fq ® Fy).
@ The proof is parallel with type A.
@ Uses the reduced expressions of the longest element

S15253525152535253 = S3es3es1s3ss1 € W(G).
@ The 2 sides come from the 2 ways to construct the intertwiner for
7123212323 ~ 7323212321

from R and K.
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Physical (geometric) interpretation of the 3D reflection eq.

Ragg K3579 Rogo Rosg K1678 K1234 Res4 = Resa K1234 K1678 Ros8 Rogo K3579 Ragg.

is a “factorization” of 3 string scattering with boundary reflections.

R : Scattering amplitude of 3 strings.
K: Reflection amplitude with boundary freedom signified by spaces 1,3, 7.
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Classical version: Birational 3D K

Introduce generators of the unipotent subgroup of Sp,:

1 0 O 1 0 0 O

10 O 1 2z 0

Xl(z) = 1 —- | X2(z) = 1 0
1 1

Given 4 parameters (a, b, ¢, d), it is easy to check that the matrix equation
Xa(a)X1(b)Xa(c)Xa(d) = Xi1(3)Xa(b) X1(2) Xa(d)
for (3, b, 2, cN/) has the unique and totally positive solution

5_@ B_iz E—E a_ab2c
A7 B’ A B’

A=ab+ad+cd, B =ab®+2abd+ ad*+ cd?.
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In terms of the (3, b, 2, d), define the birational 3D K to be the map
K:(a,b,c,d)— (5’, ¢, b, 3).

(By the definition X1 = K.)

Together with the birational 3D R, it satisfies the 3D reflection eq:

Ras6 RagoK3579R269 Ro58K 16781238 = K1234K 1678 R258 R 260K 3579 R 489 R 456,

which is an equality of birational maps on 9 variables.
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In terms of the (3, b, , d), define the birational 3D K to be the map
K:(a,b,c,d)— (5’, ¢, b, 3).
(By the definition X1 = K.)

Together with the birational 3D R, it satisfies the 3D reflection eq:
Ras6RagoK3579R260R258K1678K 1234 = K1234K 1678 R258 R269K 3579 R 489 R 456,

which is an equality of birational maps on 9 variables.

One can also define Tropical 3D K which forms the

Triad of Quantum, Birational and Tropical 3D K's

in the same way as the type A case.
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B, F,; cases

G Bs Fa
1 2 3 1 2 3 1 2 3 4
O—O&—0 O—CO—0 O O ——0
Fob Fy Fp Fp Fp Fo Fy Fq Fp Fe
R:121 =212 S:121 =212 R:121 =212
K : 2323 = 3232 J: 2323 = 3232 K : 2323 = 3232
S5 :434 =343
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B, F,; cases

G Bs Fa
1 2 3 1 2 3 1 2 3 4
O—O&—0 O—CO—0 O O ——0
Fob Fy Fp Fp Fp Fo Fy Fq Fp Fe
R:121 =212 S:121 =212 R:121 =212
K : 2323 = 3232 J: 2323 = 3232 K : 2323 = 3232
S5 :434 =343

ReEnd(Fu®Fa®Fy), K eEnd(Fp® Fy® Fp® Fy)
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B, F,; cases

G Bs Fa
1 2 3 1 2 3 1 2 3 4
O—O&—0 O—CO—0 O O ——0
Fob Fy Fp Fp Fp Fo Fy Fq Fp Fe
R:121 =212 S:121 =212 R:121 =212
K : 2323 = 3232 J: 2323 = 3232 K : 2323 = 3232
S5 :434 =343

ReEnd(Fu®Fa®Fy), K eEnd(Fp® Fy® Fp® Fy)

S= R’qﬁqz S End(qu &® qu X qu)

J = P14P>3sKP>3 P14 € End(Fq & qu & Fq ® qu).
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B, F,; cases

G Bs Fa
1 2 3 1 2 3 1 2 3 4
O—O&—0 O—CO—0 O O ——0
Fob Fy Fp Fp Fp Fo Fy Fq Fp Fe
R:121 =212 S:121 =212 R:121 =212
K : 2323 = 3232 J: 2323 = 3232 K : 2323 = 3232
S5 :434 =343

ReEnd(Fu®Fa®Fy), K eEnd(Fp® Fy® Fp® Fy)

S = R’qﬁqz S End(qu &® qu X qu)
J = P14P>3sKP>3 P14 € End(Fq X qu ® Fq ® qu).

Both (R, K) and (S, J) satisfy the 3D reflection equation.
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A reduced expression of the longest element of W(F4) is

545354525354525352515253545253515253545152535251 (: *1, Iength 24).
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A reduced expression of the longest element of W(F4) is
545354525354525352515053545253515253545152535251 (: *1, Iength 24).
The intertwiner for

T'434234232123423123412321 = Treverse order

can be constructed by composition of R, K, S in two ways, which must
coincide.
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A reduced expression of the longest element of W(F4) is
545354525354525352515053545253515253545152535251 (: *1, Iength 24).
The intertwiner for

T'434234232123423123412321 = Treverse order

can be constructed by composition of R, K, S in two ways, which must
coincide. This leads to the F4-analogue of the tetrahedron equation:

S14,15,1659,11,16 K16,10,8,7K0,13,15,1754,5,16 R7,12,1751,2,16 R6,10,17 50,14,18 K1,3,5,17
% 511,15,18K18,12,8,6 51,4,1851,8,15 R7,13,10 K1,6,11,10 K4,12,15,10 R3,10,1054.8,11 K1,7,14,20
X S3 5,18 R6,13,20 R3,12,2051,0,21 K2,10,15,20 S4,14,21 K21,13,8,352,11,21 52,8,14 R6,7,22
X K2,3.4.2255 15,21 K11,13,14,22 R10,12,22 K2.6,9,23 R3 7,23 R19,20,22 K16,17,18,22 R10,13,23
X Ks,12,14,23R3,6,24 K16,10,21,23 K4,7,0,24 R17,20,23 K5,10,11,24 R12,13,24 R17,10,24
X K18720721,24557379R22723724 = pI’OdUCt in reverse order.

16R’s, 16S’s and 18K's acting on Fq,.1 ®- - ®Fq

g "
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Another aspect: Connection with PBW basis

Ug (sl3) = (e1, e2): Subalgebra of Uy(sl3) obeying the g-Serre relation:

efe —(g+q eee + e =0, e —(q+q "eerer+ee =0.
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Another aspect: Connection with PBW basis

Ug (sl3) = (e1, e2): Subalgebra of Uy(sl3) obeying the g-Serre relation:
eler — (q+q Nereer + eel =0, eder — (q+q Hererer + ere = 0.
>O

Two PBW bases: {Ea’b’c}(a,b,c)GZ;o’ {E"> bc} (a,b,c)€

a b eS
E37b7C _ M E/a’b’c = Ea’b’c‘e1<—>927

[a].[b].[c]. ’
(la] —H" )
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Another aspect: Connection with PBW basis

Ug (sl3) = (e1, e2): Subalgebra of Uy(sl3) obeying the g-Serre relation:
efe —(g+q eee + e =0, e —(q+q "eerer+ee =0.

Two PBW bases: {Ea’b’c}(a,b,c)GZ;o’ {E"> bc} (a,b,c)€

>0

a b eS
Ea,b7C _ M E/a’b’c = Ea’b’c‘e1<—>927

[a].[b].[c]. ’
(la] —H" )

Theorem (Sergeev 2009)
Ea,b,c —_ El:/k Radbi(E/k,J N

Namely, 3D R = Transition matrix of the PBW bases of U (sh)!
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Generalizations

For arbitrary classical simple Lie algebra g, let wy be the longest element
of its Weyl group.

e & := Intertwiner of the irreducible Ay(g) modules labeled by wy.

o I := Transition matrix of the PBW bases of U/ (g).
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Generalizations

For arbitrary classical simple Lie algebra g, let wy be the longest element
of its Weyl group.

e & := Intertwiner of the irreducible Ay(g) modules labeled by wy.
o I := Transition matrix of the PBW bases of U/ (g).

The both @ and I' are associated with a pair of reduced expressions of wy.
Take the pair common.
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Generalizations

For arbitrary classical simple Lie algebra g, let wy be the longest element
of its Weyl group.

e & := Intertwiner of the irreducible Ay(g) modules labeled by wy.
o I := Transition matrix of the PBW bases of U/ (g).

The both @ and I' are associated with a pair of reduced expressions of wy.
Take the pair common.

Theorem (K-Okado-Yamada 2013)

d=T.

More aspects have been explored in [Tanisaki 2014] and [Y. Saito 2014].
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Generalizations

For arbitrary classical simple Lie algebra g, let wy be the longest element
of its Weyl group.

e & := Intertwiner of the irreducible Ay(g) modules labeled by wy.
o I := Transition matrix of the PBW bases of U/ (g).

The both @ and I' are associated with a pair of reduced expressions of wy.
Take the pair common.

Theorem (K-Okado-Yamada 2013)

d=T.

More aspects have been explored in [Tanisaki 2014] and [Y. Saito 2014].

[WoR—IZH2—T—UV7RA ]

(“Thank you so much!” in Okinawan)
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