Tetrahedron equation, 3D reflection equation and generalized quantum groups

Atsuo Kuniba
University of Tokyo

"New development in Teihumüler space theory; MCM2017" OIST 30 November 2017

Key to integrability in 2D

Yang-Baxter equation
$R_{12} R_{13} R_{23}=R_{23} R_{13} R_{12}$

Reflection equation $R_{21} K_{2} R_{12} K_{1}=K_{1} R_{21} K_{2} R_{12}$

$R: 2$ particle scattering

K : Reflection at boundary

What about 3D?

Tetrahedron equation (A.B. Zamolodchikov, 1980)

Status of finding solutions and relevant maths

Yang-Baxter eq. (2D)

- Infinitely many solutions constructed systematically by representation theory of the Drinfeld-Jimbo quantum affine algebra $U_{q}(\hat{g})$ ($\hat{g}=$ affine Kac-Moody algebra).

Status of finding solutions and relevant maths

Yang-Baxter eq. (2D)

- Infinitely many solutions constructed systematically by representation theory of the Drinfeld-Jimbo quantum affine algebra $U_{q}(\hat{g})$ ($\hat{g}=$ affine Kac-Moody algebra).

Tetrahedron eq. (3D)

- A few classes of solutions are known.
- Systematic framework yet to be developed.

Status of finding solutions and relevant maths

Yang-Baxter eq. (2D)

- Infinitely many solutions constructed systematically by representation theory of the Drinfeld-Jimbo quantum affine algebra $U_{q}(\hat{g})$ ($\hat{g}=$ affine Kac-Moody algebra).

Tetrahedron eq. (3D)

- A few classes of solutions are known.
- Systematic framework yet to be developed.
- One such approach is by quantized algebra of functions $A_{q}(g)$ ($g=$ finite dimensional simple Lie algebra).

Status of finding solutions and relevant maths

Yang-Baxter eq. (2D)

- Infinitely many solutions constructed systematically by representation theory of the Drinfeld-Jimbo quantum affine algebra $U_{q}(\hat{g})$ ($\hat{g}=$ affine Kac-Moody algebra).

Tetrahedron eq. (3D)

- A few classes of solutions are known.
- Systematic framework yet to be developed.
- One such approach is by quantized algebra of functions $A_{q}(g)$ ($g=$ finite dimensional simple Lie algebra).
- $A_{q}(g)$ is the quantum group corresponding to the dual of $U_{q}(g)$. Studied by Drinfeld (87), Vaksman-Soibelman $(89,91)$, Reshetikhin-Takhtajan-Faddeev (90), Noumi-Yamada-Mimachi (92), Kashiwara (93), Yakimov (2010), Geiss-Leclerc-Schröer (2011-) etc.
- Simplest example:

$$
S L_{2}=\left\{\left.\left(\begin{array}{ll}
t_{11} & t_{12} \\
t_{21} & t_{22}
\end{array}\right) \right\rvert\,\left[t_{i j}, t_{k l}\right]=0, t_{11} t_{22}-t_{12} t_{21}=1\right\} .
$$

- Simplest example:

$$
S L_{2}=\left\{\left.\left(\begin{array}{ll}
t_{11} & t_{12} \\
t_{21} & t_{22}
\end{array}\right) \right\rvert\,\left[t_{i j}, t_{k l}\right]=0, t_{11} t_{22}-t_{12} t_{21}=1\right\} .
$$

$A_{q}\left(s l_{2}\right)$ is generated by $t_{11}, t_{12}, t_{21}, t_{22}$ with the relations $t_{11} t_{21}=q t_{21} t_{11}, t_{12} t_{22}=q t_{22} t_{12}, t_{11} t_{12}=q t_{12} t_{11}, t_{21} t_{22}=q t_{22} t_{21}$, $\left[t_{12}, t_{21}\right]=0, \quad\left[t_{11}, t_{22}\right]=\left(q-q^{-1}\right) t_{21} t_{12}, \quad t_{11} t_{22}-q t_{12} t_{21}=1$. Hopf algebra with coproduct $\Delta t_{i j}=\sum_{k} t_{i k} \otimes t_{k j}$.

- Simplest example:

$$
S L_{2}=\left\{\left.\left(\begin{array}{ll}
t_{11} & t_{12} \\
t_{21} & t_{22}
\end{array}\right) \right\rvert\,\left[t_{i j}, t_{k l}\right]=0, t_{11} t_{22}-t_{12} t_{21}=1\right\}
$$

$A_{q}\left(s l_{2}\right)$ is generated by $t_{11}, t_{12}, t_{21}, t_{22}$ with the relations
$t_{11} t_{21}=q t_{21} t_{11}, t_{12} t_{22}=q t_{22} t_{12}, t_{11} t_{12}=q t_{12} t_{11}, t_{21} t_{22}=q t_{22} t_{21}$,
$\left[t_{12}, t_{21}\right]=0, \quad\left[t_{11}, t_{22}\right]=\left(q-q^{-1}\right) t_{21} t_{12}, \quad t_{11} t_{22}-q t_{12} t_{21}=1$.
Hopf algebra with coproduct $\Delta t_{i j}=\sum_{k} t_{i k} \otimes t_{k j}$.

- Fock representation $\quad \pi_{1}: A_{q}\left(\mathbf{s l}_{2}\right) \rightarrow \operatorname{End}\left(F_{q}\right)$
$F_{q}=\oplus_{m \geq 0} \mathbb{C}|m\rangle: q$-boson Fock space

$$
\begin{aligned}
& \pi_{1}:\left(\begin{array}{ll}
t_{11} & t_{12} \\
t_{21} & t_{22}
\end{array}\right) \longmapsto\left(\begin{array}{cc}
\mathbf{a}^{-} & \mathbf{k} \\
-q \mathbf{k} & \mathbf{a}^{+}
\end{array}\right) \\
& \mathbf{k}|m\rangle=q^{m}|m\rangle, \mathbf{a}^{+}|m\rangle=|m+1\rangle, \mathbf{a}^{-}|m\rangle=\left(1-q^{2 m}\right)|m-1\rangle
\end{aligned}
$$

Theorem (Classification of irreducible representations. Soibelman 1991)

Theorem (Classification of irreducible representations. Soibelman 1991)
(1) Irreducible reps. $\stackrel{1: 1}{\longleftrightarrow}$ elements of the Weyl group $W(g)$ (up to a "torus degree of freedom").

Theorem (Classification of irreducible representations. Soibelman 1991)
(1) Irreducible reps. $\stackrel{1: 1}{\longleftrightarrow}$ elements of the Weyl group $W(g)$ (up to a "torus degree of freedom").

Set $\pi_{i}:=$ the irreducible rep. for the simple reflection $s_{i} \in W(g)$ (i : a vertex of the Dynkin diagram of g).

Theorem (Classification of irreducible representations. Soibelman 1991)
(1) Irreducible reps. $\stackrel{1: 1}{\longleftrightarrow}$ elements of the Weyl group $W(g)$ (up to a "torus degree of freedom").
Set $\pi_{i}:=$ the irreducible rep. for the simple reflection $s_{i} \in W(g)$ (i : a vertex of the Dynkin diagram of g).
(2) The irreducible rep. corresponding to the reduced expression $s_{i_{1}} \cdots s_{i_{r}} \in W(g)$ is realized as the tensor product $\pi_{i_{1}} \otimes \cdots \otimes \pi_{i_{r}}$.

Theorem (Classification of irreducible representations. Soibelman 1991)

(1) Irreducible reps. $\stackrel{1: 1}{\longleftrightarrow}$ elements of the Weyl group $W(g)$ (up to a "torus degree of freedom").

Set $\pi_{i}:=$ the irreducible rep. for the simple reflection $s_{i} \in W(g)$ (i : a vertex of the Dynkin diagram of g).
(2) The irreducible rep. corresponding to the reduced expression $s_{i_{1}} \cdots s_{i_{r}} \in W(g)$ is realized as the tensor product $\pi_{i_{1}} \otimes \cdots \otimes \pi_{i_{r}}$.

Crucial Corollary

If $s_{i_{1}} \cdots s_{i_{r}}=s_{j_{1}} \cdots s_{j_{r}}$ are 2 different reduced expressions, then

$$
\pi_{i_{1}} \otimes \cdots \otimes \pi_{i_{r}} \simeq \pi_{j_{1}} \otimes \cdots \otimes \pi_{j_{r}}
$$

\Longrightarrow Exists the unique map Φ called intertwiner such that

$$
\left(\pi_{i_{1}} \otimes \cdots \otimes \pi_{i_{r}}\right) \circ \Phi=\Phi \circ\left(\pi_{j_{1}} \otimes \cdots \otimes \pi_{j_{r}}\right)
$$

Example

$$
A_{q}\left(s s_{3}\right)=\left\langle t_{i j}\right\rangle_{i, j=1}^{3}
$$

Fock representations $\quad \pi_{1} \quad \pi_{2}$

$$
\left(\begin{array}{ccc}
t_{11} & t_{12} & t_{13} \\
t_{21} & t_{22} & t_{23} \\
t_{31} & t_{32} & t_{33}
\end{array}\right) \longmapsto\left(\begin{array}{ccc}
\mathbf{a}^{-} & \mathbf{k} & 0 \\
-q \mathbf{k} & \mathbf{a}^{+} & 0 \\
0 & 0 & 1
\end{array}\right), \quad\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \mathbf{a}^{-} & \mathbf{k} \\
0 & -q \mathbf{k} & \mathbf{a}^{+}
\end{array}\right)
$$

Example

$$
A_{q}\left(s l_{3}\right)=\left\langle t_{i j}\right\rangle_{i, j=1}^{3}
$$

Fock representations
π_{1}
π_{2}

$$
\left(\begin{array}{ccc}
t_{11} & t_{12} & t_{13} \\
t_{21} & t_{22} & t_{23} \\
t_{31} & t_{32} & t_{33}
\end{array}\right) \longmapsto\left(\begin{array}{ccc}
\mathbf{a}^{-} & \mathbf{k} & 0 \\
-q \mathbf{k} & \mathbf{a}^{+} & 0 \\
0 & 0 & 1
\end{array}\right), \quad\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \mathbf{a}^{-} & \mathbf{k} \\
0 & -q \mathbf{k} & \mathbf{a}^{+}
\end{array}\right)
$$

$W\left(s l_{3}\right)=\left\langle s_{1}, s_{2}\right\rangle . \quad s_{2} s_{1} s_{2}=s_{1} s_{2} s_{1}$ (Coxeter relation)
$\Longrightarrow \pi_{2} \otimes \pi_{1} \otimes \pi_{2} \simeq \pi_{1} \otimes \pi_{2} \otimes \pi_{1}$ as representations on $\left(F_{q}\right)^{\otimes 3}$
Exists the intertwiner $\Phi:\left(F_{q}\right)^{\otimes 3} \rightarrow\left(F_{q}\right)^{\otimes 3}$ such that $\left(\pi_{2} \otimes \pi_{1} \otimes \pi_{2}\right) \circ \Phi=\Phi \circ\left(\pi_{1} \otimes \pi_{2} \otimes \pi_{1}\right)$.

Explicit form

$$
\begin{gathered}
R:=\Phi P_{13}, \quad P_{13}(x \otimes y \otimes z)=z \otimes y \otimes x, \\
R(|i\rangle \otimes|j\rangle \otimes|k\rangle)=\sum_{a b c} R_{i j k}^{a b c}|a\rangle \otimes|b\rangle \otimes|c\rangle . \\
R_{i j k}^{a b c}=\delta_{i+j, a+b} \delta_{j+k, b+c} \sum_{\lambda, \mu \geq 0, \lambda+\mu=b}(-1)^{\lambda} q^{i(c-j)+(k+1) \lambda+\mu(\mu-k)} \\
\times\left[\begin{array}{c}
i, j, c+\mu \\
\mu, \lambda, i-\mu, j-\lambda, c
\end{array}\right] \\
(q)_{m}=\prod_{j=1}^{m}\left(1-q^{j}\right), \quad\left[\begin{array}{l}
i_{1}, \ldots, i_{r} \\
j_{1}, \ldots, j_{s}
\end{array}\right]=\frac{\prod_{m=1}^{r}\left(q^{2}\right)_{i_{m}}}{\prod_{m=1}^{s}\left(q^{2}\right)_{j_{m}}}
\end{gathered}
$$

Example

$$
\begin{aligned}
& R_{314}^{041}=-q^{2}\left(1-q^{4}\right)\left(1-q^{6}\right)\left(1-q^{8}\right), \\
& R_{314}^{132}=\left(1-q^{6}\right)\left(1-q^{8}\right)\left(1-q^{4}-q^{6}-q^{8}-q^{10}\right), \\
& R_{314}^{223}=q^{2}\left(1+q^{2}\right)\left(1+q^{4}\right)\left(1-q^{6}\right)\left(1-q^{6}-q^{10}\right), \\
& R_{314}^{314}=q^{6}\left(1+q^{2}+q^{4}-q^{8}-q^{10}-q^{12}-q^{14}\right), \\
& R_{314}^{405}=q^{12} .
\end{aligned}
$$

As these examples indicate, all the matrix elements of R are polynomials in q with integer coefficients.

Example

$$
\begin{aligned}
& R_{314}^{041}=-q^{2}\left(1-q^{4}\right)\left(1-q^{6}\right)\left(1-q^{8}\right), \\
& R_{314}^{132}=\left(1-q^{6}\right)\left(1-q^{8}\right)\left(1-q^{4}-q^{6}-q^{8}-q^{10}\right), \\
& R_{314}^{223}=q^{2}\left(1+q^{2}\right)\left(1+q^{4}\right)\left(1-q^{6}\right)\left(1-q^{6}-q^{10}\right), \\
& R_{314}^{314}=q^{6}\left(1+q^{2}+q^{4}-q^{8}-q^{10}-q^{12}-q^{14}\right), \\
& R_{314}^{405}=q^{12} .
\end{aligned}
$$

As these examples indicate, all the matrix elements of R are polynomials in q with integer coefficients.

Furthermore, for any $(i, j, k) \in \mathbb{Z}_{\geq 0}^{3}$, there is a unique (a, b, c) such that

$$
\left.R_{i j k}^{a b c}\right|_{q=0}=1
$$

This property will be utilized later to define the tropical 3D R.

Theorem (Kapranov-Voevodsky 1994)
R satisfies the tetrahedron eq. $R_{123} R_{145} R_{246} R_{356}=R_{356} R_{246} R_{145} R_{123}$.

Theorem (Kapranov-Voevodsky 1994)

R satisfies the tetrahedron eq. $R_{123} R_{145} R_{246} R_{356}=R_{356} R_{246} R_{145} R_{123}$.
Essence of proof. Consider $A_{q}\left(s l_{4}\right)$ and $W\left(s l_{4}\right)=\left\langle s_{1}, s_{2}, s_{3}\right\rangle$.

$$
\begin{gathered}
s_{2} s_{1} s_{2}=s_{1} s_{2} s_{1}, \quad s_{3} s_{2} s_{3}=s_{2} s_{3} s_{2}, \quad s_{1} s_{3}=s_{3} s_{1} \\
s_{1} s_{2} s_{3} s_{1} s_{2} s_{1}=s_{3} s_{2} s_{3} s_{1} s_{2} s_{3} \text { (longest element) }
\end{gathered}
$$

The intertwiner for the last one is constructed in 2 different ways as

$123 \underline{121}$	Φ_{456}	$12 \underline{3121}$	P_{34}
123212	Φ_{234}	$\underline{121321}$	Φ_{123}
$\underline{132312}$	$P_{12} P_{45}$	$\underline{212321}$	Φ_{345}
$3 \underline{12132}$	Φ_{234}	$\underline{213231}$	$P_{23} P_{56}$
$\underline{321232}$	Φ_{456}	$\underline{231213}$	Φ_{345}
$32 \underline{1323}$	P_{34}	$\underline{232123}$	Φ_{123}
323123		323123	

Equate the 2 sides, substitute $\Phi_{i j k}=R_{i j k} P_{i k}$ and cancel $P_{i j}$'s. \square

Summary so far (type A case)

Weyl group elements \longleftrightarrow "Multi-string states" Cubic Coxeter relation $\longleftrightarrow 3 \mathrm{D} R$ Reduced words for longest element \longleftrightarrow Tetrahedron equation

Summary so far (type A case)

Weyl group elements \longleftrightarrow "Multi-string states"
Cubic Coxeter relation $\longleftrightarrow 3 \mathrm{D} R$
Reduced words for longest element \longleftrightarrow Tetrahedron equation

Remark

(1) 3D $R=$ "Quantization" of Miquel's theorem (1838)
(Bazhanov-Sergeev-Mangazeev 2008)

Summary so far (type A case)

Weyl group elements \longleftrightarrow "Multi-string states"
Cubic Coxeter relation $\longleftrightarrow 3 \mathrm{D} R$
Reduced words for longest element \longleftrightarrow Tetrahedron equation

Remark

(1) 3D $R=$ "Quantization" of Miquel's theorem (1838) (Bazhanov-Sergeev-Mangazeev 2008)
(2) Tropical (or combinatorial) analogue.
(3) Birational (or classical) analogue.

The next 3 pages demonstrate (2) and (3), which will lead to a Triad of the 3 versions of 3D Rs.

Tropical 3D R

Easy to show $\left.R_{i j k}^{a b c}\right|_{q=0}=\delta_{i}^{a+b-\min (a, c)} \delta_{i}^{\min (a, c)} \delta_{k}^{b+c-\min (a, c)}$.
So the tropical 3D $R \quad \mathbf{R}:=\left.R\right|_{q=0}: \mathbb{Z}_{\geq 0}^{3} \rightarrow \mathbb{Z}_{\geq 0}^{3}$ defined by

$$
\mathbf{R}(a, b, c)=(a+b-\min (a, c), \min (a, c), b+c-\min (a, c))
$$

satisfies the tropical tetrahedron eq. (equality as maps on $\mathbb{Z}_{\geq 0}^{6}$) :

$\mathrm{R}^{\text {, }}$ \|314516 \rangle	
$\mathbf{R}_{123} \swarrow$	$\searrow \mathrm{R}_{356}$
\|132516>	\|311543>
R $\mathbf{1 4 5}^{\text {d }}$	$\downarrow \mathbf{R}_{246}$
\|532156>	\|351147>
R246 \downarrow	$\downarrow \mathbf{R}_{145}$
\|512354>	\|151327>
$\mathbf{R}_{356} \downarrow$	$\swarrow \mathbf{R}_{123}$

Birational 3D R

For the matrices generating a unipotent subgroup of $S L_{3}$

$$
G_{1}(z)=\left(\begin{array}{ccc}
1 & z & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad G_{2}(z)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & z \\
0 & 0 & 1
\end{array}\right)
$$

the unique solution to the Lusztig type equation

$$
G_{1}(a) G_{2}(b) G_{1}(c)=G_{2}(\tilde{a}) G_{1}(\tilde{b}) G_{2}(\tilde{c})
$$

defines a birational map on 3 variables which we call birational 3D R :

$$
\mathbf{R}:(a, b, c) \mapsto(\tilde{c}, \tilde{b}, \tilde{a})=\left(\frac{a b}{a+c}, a+c, \frac{b c}{a+c}\right)
$$

Its tropical limit reproduces the Tropical 3D R introduced before:

$$
\mathcal{R}:(a, b, c) \mapsto(a+b-\min (a, c), \min (a, c), b+c-\min (a, c)) .
$$

Summary: Triad of 3D R

classical limit low temperature limit

Quantum R	Tropical \mathbf{R}	Birational \mathcal{R}
Intertwiner of	Bijection on	Birational map on
$A_{q}\left(s l_{3}\right)$ modules	$\mathbb{Z}_{\geq 0}^{3}$	\mathbb{C}^{3}

All satisfying the tetrahedron equation.

Recent developments

(1) Type B, C, F_{4} cases: 3D analogue of reflection equation.

Recent developments

(1) Type B, C, F_{4} cases: 3D analogue of reflection equation.
(2) Connection to the Poincaré-Birkhoff-Witt basis of $U_{q}^{+}(g)$.

Recent developments

(1) Type B, C, F_{4} cases: 3D analogue of reflection equation.
(2) Connection to the Poincaré-Birkhoff-Witt basis of $U_{q}^{+}(g)$.
(3) Reduction to 2D YBE: Infinitely many quantum R matrices associated with generalized quantum groups.

Recent developments

(1) Type $\mathrm{B}, \mathrm{C}, \mathrm{F}_{4}$ cases: 3D analogue of reflection equation.
(2) Connection to the Poincaré-Birkhoff-Witt basis of $U_{q}^{+}(g)$.
(3) Reduction to 2D YBE: Infinitely many quantum R matrices associated with generalized quantum groups.
(4) Application to matrix product stationary states in integrable Markov processes such as totally asymmetric exclusion/zero-range processes.

Today in what follows: Mainly and will touch only briefly.
$A_{q}\left(C_{3}\right)=\left\langle t_{i j}\right\rangle_{i, j=1}^{6}:($ Reshetikhin-Takhtajan-Faddeev 1990)

$\pi_{1}:\left(\begin{array}{cccccc}\mathbf{a}^{-} & \mathbf{k} & 0 & 0 & 0 & 0 \\ -q \mathbf{k} & \mathbf{a}^{+} & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & \mathbf{a}^{-} & -\mathbf{k} \\ 0 & 0 & 0 & 0 & q \mathbf{k} & \mathbf{a}^{+}\end{array}\right), \pi_{2}:\left(\begin{array}{cccccc}1 & 0 & 0 & 0 & 0 & 0 \\ 0 & \mathbf{a}^{-} & \mathbf{k} & 0 & 0 & 0 \\ 0 & -q \mathbf{k} & \mathbf{a}^{+} & 0 & 0 & 0 \\ 0 & 0 & 0 & \mathbf{a}^{-} & -\mathbf{k} & 0 \\ 0 & 0 & 0 & q \mathbf{k} & \mathbf{a}^{+} & 0 \\ 0 & 0 & 0 & 0 & 0 & 1\end{array}\right)$
$\pi_{3}:\left(\begin{array}{cccccc}1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & \mathbf{A}^{-} & \mathbf{K} & 0 & 0 \\ 0 & 0 & -q^{2} \mathbf{K} & \mathbf{A}^{+} & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1\end{array}\right), \quad\left\langle\mathbf{A}^{ \pm}, \mathbf{K}\right\rangle=\left.\left\langle\mathbf{a}^{ \pm}, \mathbf{k}\right\rangle\right|_{q \rightarrow q^{2}}$.

$$
\begin{aligned}
W\left(C_{3}\right)= & \left\langle s_{1}, s_{2}, s_{3}\right\rangle \\
& s_{1} s_{3}=s_{3} s_{1}, \quad s_{1} s_{2} s_{1}=s_{2} s_{1} s_{2}, \quad s_{2} s_{3} s_{2} s_{3}=s_{3} s_{2} s_{3} s_{2}
\end{aligned}
$$

Write simply as $\quad \pi_{i_{1}, \ldots, i_{r}}:=\pi_{i_{1}} \otimes \cdots \otimes \pi_{i_{r}}$. Then,

Equivalence Intertwiner

$$
\begin{array}{rlrlrl}
\pi_{13} & \simeq \pi_{31}, \quad & P_{12}(x \otimes y)=y \otimes x, & & \text { (trivial) } \\
\pi_{121} & \simeq \pi_{212}, \quad \Phi=R P_{13} & & \text { (same as type A) }, \\
\pi_{2323} & \simeq \pi_{3232}, \quad & \Psi=K P_{14} P_{23} & & \text { (new). } \\
K & \in \operatorname{End}\left(F_{q^{2}} \otimes F_{q} \otimes F_{q^{2}} \otimes F_{q}\right), & & R \in \operatorname{End}\left(F_{q}^{\otimes 3}\right) .
\end{array}
$$

Matrix elements

$$
K(|a\rangle \otimes|i\rangle \otimes|b\rangle \otimes|j\rangle)=\sum_{c, m, d, n} K_{a i b j}^{c m d n}|c\rangle \otimes|m\rangle \otimes|d\rangle \otimes|n\rangle .
$$

$$
K_{a i b j}^{c m d n}=0 \text { unless } c+m+d=a+i+b, \quad d+n-c=b+j-a .
$$

Matrix elements

$$
K(|a\rangle \otimes|i\rangle \otimes|b\rangle \otimes|j\rangle)=\sum_{c, m, d, n} K_{a i b j}^{c m d n}|c\rangle \otimes|m\rangle \otimes|d\rangle \otimes|n\rangle .
$$

$$
K_{a i b j}^{c m d n}=0 \text { unless } c+m+d=a+i+b, \quad d+n-c=b+j-a .
$$

Prop. (K-Okado '12, A more structural formula in K-Maruyama '15)

$$
\begin{aligned}
& K_{a, i, 0, j}^{c, m, 0, n}=\sum_{\lambda \geq 0}(-1)^{m+\lambda} \frac{\left(q^{4}\right)_{c+\lambda}}{\left(q^{4}\right)_{c}} q^{\phi_{2}}\left[\begin{array}{c}
i, j \\
\lambda, j-\lambda, m-\lambda, i-m+\lambda
\end{array}\right] \\
& \phi_{2}=(a+c+1)(m+j-2 \lambda)+m-j . \\
& K_{a i b j}^{c m d n}=\frac{\left(q^{4}\right)_{a}}{\left(q^{4}\right)_{c}} \sum_{\alpha, \beta, \gamma \geq 0} \frac{(-1)^{\alpha+\gamma}}{\left(q^{4}\right)_{d-\beta}} q^{\phi_{1}} K_{c, m+d-\alpha-\beta-\gamma, 0, n+d-\alpha-\beta-\gamma}^{a, i+b-\alpha-\beta-\gamma, 0, b-\alpha-\beta-\gamma} \\
& \quad \times\left[\begin{array}{c}
b, d-\beta, i+b-\alpha-\beta, j+b-\alpha-\beta \\
\alpha, \beta, \gamma, m-\alpha, n-\alpha, b-\alpha-\beta, d-\beta-\gamma
\end{array}\right] \\
& \phi_{1}=\alpha(\alpha+2 d-2 \beta-1)+(2 \beta-d)(m+n+d)+\gamma(\gamma-1)-b(i+j+b) .
\end{aligned}
$$

Example

$$
\begin{aligned}
& K_{2110}^{1300}=q^{8}\left(1-q^{8}\right), \\
& K_{2110}^{2110}=-q^{4}\left(1-q^{8}+q^{14}\right), \\
& K_{2110}^{2201}=-q^{6}\left(1+q^{2}\right)\left(1-q^{2}+q^{4}-q^{6}-q^{10}\right), \\
& K_{2110}^{3011}=1-q^{8}+q^{14} \\
& K_{2110}^{3102}=-q^{10}\left(1-q+q^{2}\right)\left(1+q+q^{2}\right), \\
& K_{2110}^{4003}=q^{4} .
\end{aligned}
$$

Properties

- $\forall K_{i j k l}^{a b c d} \in \mathbb{Z}[q],\left.\quad K_{i j k l}^{a b c d}\right|_{q=0} \in\{0,1\}$,
- For any $(i, j, k, l) \in \mathbb{Z}_{\geq 0}^{4}$, there is unique $(a, b, c, d) \in \mathbb{Z}_{\geq 0}^{4}$ such that $\left.K_{i j k l}^{a b c d}\right|_{q=0}=1$.

Theorem (K-Okado 2012)

R and K yield the first nontrivial solution to the 3D reflection equation proposed by Isaev-Kulish in 1997:
$R_{489} K_{3579} R_{269} R_{258} K_{1678} K_{1234} R_{654}=R_{654} K_{1234} K_{1678} R_{258} R_{269} K_{3579} R_{489}$.

Theorem (K-Okado 2012)

R and K yield the first nontrivial solution to the 3D reflection equation proposed by Isaev-Kulish in 1997:
$R_{489} K_{3579} R_{269} R_{258} K_{1678} K_{1234} R_{654}=R_{654} K_{1234} K_{1678} R_{258} R_{269} K_{3579} R_{489}$.

- An equality in $\operatorname{End}\left(F_{q^{2}} \otimes F_{q} \otimes F_{q^{2}} \otimes F_{q} \otimes F_{q} \otimes F_{q} \otimes F_{q^{2}} \otimes F_{q} \otimes F_{q}\right)$.
- The proof is parallel with type A.
- Uses the reduced expressions of the longest element

$$
s_{1} s_{2} s_{3} s_{2} s_{1} s_{2} s_{3} s_{2} s_{3}=s_{3} s_{2} s_{3} s_{2} s_{1} s_{2} s_{3} s_{2} s_{1} \in W\left(C_{3}\right)
$$

- The 2 sides come from the 2 ways to construct the intertwiner for

$$
\pi_{123212323} \simeq \pi_{323212321}
$$

from R and K.

Physical (geometric) interpretation of the 3D reflection eq.
$R_{489} K_{3579} R_{269} R_{258} K_{1678} K_{1234} R_{654}=R_{654} K_{1234} K_{1678} R_{258} R_{269} K_{3579} R_{489}$. is a "factorization" of 3 string scattering with boundary reflections.
R : Scattering amplitude of 3 strings.
K : Reflection amplitude with boundary freedom signified by spaces $1,3,7$.

Classical version: Birational 3D K

Introduce generators of the unipotent subgroup of Sp_{4} :

$$
X_{1}(z)=\left(\begin{array}{cccc}
1 & z & 0 & 0 \\
& 1 & 0 & 0 \\
& & 1 & -z \\
& & & 1
\end{array}\right), \quad X_{2}(z)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
& 1 & 2 z & 0 \\
& & 1 & 0 \\
& & & 1
\end{array}\right)
$$

Given 4 parameters (a, b, c, d), it is easy to check that the matrix equation

$$
X_{2}(a) X_{1}(b) X_{2}(c) X_{1}(d)=X_{1}(\tilde{a}) X_{2}(\tilde{b}) X_{1}(\tilde{c}) X_{2}(\tilde{d})
$$

for $(\tilde{a}, \tilde{b}, \tilde{c}, \tilde{d})$ has the unique and totally positive solution

$$
\begin{aligned}
& \tilde{a}=\frac{b c d}{A}, \quad \tilde{b}=\frac{A^{2}}{B}, \quad \tilde{c}=\frac{B}{A}, \quad \tilde{d}=\frac{a b^{2} c}{B} \\
& A=a b+a d+c d, \quad B=a b^{2}+2 a b d+a d^{2}+c d^{2}
\end{aligned}
$$

In terms of the ($\tilde{a}, \tilde{b}, \tilde{c}, \tilde{d})$, define the birational 3D \mathcal{K} to be the map

$$
\mathcal{K}:(a, b, c, d) \mapsto(\tilde{d}, \tilde{c}, \tilde{b}, \tilde{a}) .
$$

(By the definition $\mathcal{K}^{-1}=\mathcal{K}$.)
Together with the birational 3D \mathcal{R}, it satisfies the 3D reflection eq:
$\mathcal{R}_{456} \mathcal{R}_{489} \mathcal{K}_{3579} \mathcal{R}_{269} \mathcal{R}_{258} \mathcal{K}_{1678} \mathcal{K}_{1234}=\mathcal{K}_{1234} \mathcal{K}_{1678} \mathcal{R}_{258} \mathcal{R}_{269} \mathcal{K}_{3579} \mathcal{R}_{489} \mathcal{R}_{456}$,
which is an equality of birational maps on 9 variables.

In terms of the ($\tilde{a}, \tilde{b}, \tilde{c}, \tilde{d})$, define the birational $3 \mathrm{D} \mathcal{K}$ to be the map

$$
\mathcal{K}:(a, b, c, d) \mapsto(\tilde{d}, \tilde{c}, \tilde{b}, \tilde{a}) .
$$

(By the definition $\mathcal{K}^{-1}=\mathcal{K}$.)
Together with the birational 3D \mathcal{R}, it satisfies the 3D reflection eq:
$\mathcal{R}_{456} \mathcal{R}_{489} \mathcal{K}_{3579} \mathcal{R}_{269} \mathcal{R}_{258} \mathcal{K}_{1678} \mathcal{K}_{1234}=\mathcal{K}_{1234} \mathcal{K}_{1678} \mathcal{R}_{258} \mathcal{R}_{269} \mathcal{K}_{3579} \mathcal{R}_{489} \mathcal{R}_{456}$,
which is an equality of birational maps on 9 variables.

One can also define Tropical 3D K which forms the
Triad of Quantum, Birational and Tropical 3D K's
in the same way as the type A case.

B, F_{4} cases

C3

$$
\begin{array}{ll}
R: 121=212 & S: 121=212 \\
K: 2323=3232 & J: 2323=3232
\end{array}
$$

$$
B_{3}
$$

F_{4}

$R: 121=212$
$K: 2323=3232$
$S: 434=343$

B, F_{4} cases

C_{3}

B_{3}
F_{4}

1	2	3	1	2	3	1	2
F_{q}	F_{q}	$F_{q^{2}}$	$F_{q^{2}}$	$F_{q^{2}}$	F_{q}	F_{q}	F_{q}
$R: 121=212$	$S: 121=212$	R	$F_{q^{2}}$	$F_{q^{2}}$			
$K: 2323=3232$	$J: 2323=3232$	$K: 2323=3232$					
$R \in \operatorname{End}\left(F_{q} \otimes F_{q} \otimes F_{q}\right), \quad K \in \operatorname{End}\left(F_{q^{2}} \otimes F_{q} \otimes F_{q^{2}} \otimes F_{q}\right)$							

B, F_{4} cases

B_{3}
F_{4}

$$
\begin{aligned}
& 1 \\
& F_{q} \\
& F_{q}
\end{aligned} F_{q^{2}} \quad F_{q^{2}} \quad F_{q^{2}} \quad F_{q} \quad F_{q} \quad F_{q} \quad F_{q^{2}} \quad F_{q^{2}}
$$

B, F_{4} cases

$$
\begin{aligned}
& C_{3} \\
& B_{3} \\
& F_{4} \\
& R: 121=212 \\
& S: 121=212 \\
& R: 121=212 \\
& K: 2323=3232 \\
& J: 2323=3232 \\
& K: 2323=3232 \\
& S: 434=343 \\
& R \in \operatorname{End}\left(F_{q} \otimes F_{q} \otimes F_{q}\right), \quad K \in \operatorname{End}\left(F_{q^{2}} \otimes F_{q} \otimes F_{q^{2}} \otimes F_{q}\right) \\
& S=\left.R\right|_{q \rightarrow q^{2}} \in \operatorname{End}\left(F_{q^{2}} \otimes F_{q^{2}} \otimes F_{q^{2}}\right) \\
& J=P_{14} P_{23} K P_{23} P_{14} \in \operatorname{End}\left(F_{q} \otimes F_{q^{2}} \otimes F_{q} \otimes F_{q^{2}}\right) .
\end{aligned}
$$

Both (R, K) and (S, J) satisfy the 3D reflection equation.

A reduced expression of the longest element of $W\left(F_{4}\right)$ is
$s_{4} s_{3} s_{4} s_{2} s_{3} s_{4} s_{2} s_{3} s_{2} s_{1} s_{2} s_{3} s_{4} s_{2} s_{3} s_{1} s_{2} s_{3} s_{4} s_{1} s_{2} s_{3} s_{2} s_{1} \quad(=-1$, length 24).

A reduced expression of the longest element of $W\left(F_{4}\right)$ is
$s_{4} s_{3} s_{4} s_{2} s_{3} s_{4} s_{2} s_{3} s_{2} s_{1} s_{2} s_{3} s_{4} s_{2} s_{3} s_{1} s_{2} s_{3} s_{4} s_{1} s_{2} s_{3} s_{2} s_{1} \quad(=-1$, length 24).
The intertwiner for

$$
\pi_{434234232123423123412321} \simeq \pi_{\text {reverse order }}
$$

can be constructed by composition of R, K, S in two ways, which must coincide.

A reduced expression of the longest element of $W\left(F_{4}\right)$ is
$s_{4} s_{3} s_{4} s_{2} s_{3} s_{4} s_{2} s_{3} s_{2} s_{1} s_{2} s_{3} s_{4} s_{2} s_{3} s_{1} s_{2} s_{3} s_{4} s_{1} s_{2} s_{3} s_{2} s_{1} \quad(=-1$, length 24).
The intertwiner for

$$
\pi_{434234232123423123412321} \simeq \pi_{\text {reverse order }}
$$

can be constructed by composition of R, K, S in two ways, which must coincide. This leads to the F_{4}-analogue of the tetrahedron equation:

$$
\begin{aligned}
& S_{14,15,16} S_{9,11,16} K_{16,10,8,7} K_{9,13,15,17} S_{4,5,16} R_{7,12,17} S_{1,2,16} R_{6,10,17} S_{9,14,18} K_{1,3,5,17} \\
\times & S_{11,15,18} K_{18,12,8,6} S_{1,4,18} S_{1,8,15} R_{7,13,19} K_{1,6,11,19} K_{4,12,15,19} R_{3,10,19} S_{4,8,11} K_{1,7,14,20} \\
\times & S_{2,5,18} R_{6,13,20} R_{3,12,20} S_{1,9,21} K_{2,10,15,20} S_{4,14,21} K_{21,13,8,3} S_{2,11,21} S_{2,8,14} R_{6,7,22} \\
\times & K_{2,3,4,22} S_{5,15,21} K_{11,13,14,22} R_{10,12,22} K_{2,6,9,23} R_{3,7,23} R_{19,20,22} K_{16,17,18,22} R_{10,13,23} \\
\times & K_{5,12,14,23} R_{3,6,24} K_{16,19,21,23} K_{4,7,9,24} R_{17,20,23} K_{5,10,11,24} R_{12,13,24} R_{17,19,24} \\
\times & K_{18,20,21,24} S_{5,8,9} R_{22,23,24}=\text { product in reverse order. }
\end{aligned}
$$

$16 R$'s, $16 S$'s and $18 K$'s acting on $F_{q_{i_{1}}} \otimes \cdots \otimes F_{q_{i_{24}}}$.

Another aspect: Connection with PBW basis

$U_{q}^{+}\left(s /_{3}\right)=\left\langle e_{1}, e_{2}\right\rangle$: Subalgebra of $U_{q}(s / 3)$ obeying the q-Serre relation:
$e_{1}^{2} e_{2}-\left(q+q^{-1}\right) e_{1} e_{2} e_{1}+e_{2} e_{1}^{2}=0, \quad e_{2}^{2} e_{1}-\left(q+q^{-1}\right) e_{2} e_{1} e_{2}+e_{1} e_{2}^{2}=0$.

Another aspect: Connection with PBW basis

$U_{q}^{+}(s / 3)=\left\langle e_{1}, e_{2}\right\rangle$: Subalgebra of $U_{q}(s / 3)$ obeying the q-Serre relation:
$e_{1}^{2} e_{2}-\left(q+q^{-1}\right) e_{1} e_{2} e_{1}+e_{2} e_{1}^{2}=0, \quad e_{2}^{2} e_{1}-\left(q+q^{-1}\right) e_{2} e_{1} e_{2}+e_{1} e_{2}^{2}=0$.
Two PBW bases: $\left\{E^{a, b, c}\right\}_{(a, b, c) \in \mathbb{Z}_{\geq 0}^{3}}, \quad\left\{E^{\prime a, b, c}\right\}_{(a, b, c) \in \mathbb{Z}_{\geq 0}^{3}}$

$$
\begin{aligned}
E^{a, b, c} & =\frac{e_{1}^{a}\left(\left[e_{2}, e_{1}\right]_{q}\right)^{b} e_{2}^{c}}{[a]![b]![c]!}, \quad E^{\prime a, b, c}=\left.E^{a, b, c}\right|_{e_{1} \leftrightarrow e_{2}} \\
([a]!: & \left.=\prod_{i=1}^{a} \frac{q^{i}-q^{-i}}{q-q^{-1}}\right)
\end{aligned}
$$

Another aspect: Connection with PBW basis

$U_{q}^{+}\left(s /_{3}\right)=\left\langle e_{1}, e_{2}\right\rangle$: Subalgebra of $U_{q}\left(s /_{3}\right)$ obeying the q-Serre relation:
$e_{1}^{2} e_{2}-\left(q+q^{-1}\right) e_{1} e_{2} e_{1}+e_{2} e_{1}^{2}=0, \quad e_{2}^{2} e_{1}-\left(q+q^{-1}\right) e_{2} e_{1} e_{2}+e_{1} e_{2}^{2}=0$.
Two PBW bases: $\left\{E^{a, b, c}\right\}_{(a, b, c) \in \mathbb{Z}_{\geq 0}^{3}}, \quad\left\{E^{\prime a, b, c}\right\}_{(a, b, c) \in \mathbb{Z}_{\geq 0}^{3}}$

$$
\begin{aligned}
E^{a, b, c} & =\frac{e_{1}^{a}\left(\left[e_{2}, e_{1}\right]_{q}\right)^{b} e_{2}^{c}}{[a]![b]![c]!}, \quad E^{\prime a, b, c}=\left.E^{a, b, c}\right|_{e_{1} \leftrightarrow e_{2}} \\
([a]!: & \left.=\prod_{i=1}^{a} \frac{q^{i}-q^{-i}}{q-q^{-1}}\right)
\end{aligned}
$$

Theorem (Sergeev 2009)

$$
E^{a, b, c}=\sum_{i j k} R_{i, j, k}^{a b c} E^{\prime k, j, i} .
$$

Namely, 3D $R=$ Transition matrix of the PBW bases of $U_{q}^{+}(s / 3)$!

Generalizations

For arbitrary classical simple Lie algebra g, let w_{0} be the longest element of its Weyl group.

- $\Phi:=$ Intertwiner of the irreducible $A_{q}(g)$ modules labeled by w_{0}.
- $\Gamma:=$ Transition matrix of the PBW bases of $U_{q}^{+}(g)$.

Generalizations

For arbitrary classical simple Lie algebra g, let w_{0} be the longest element of its Weyl group.

- $\Phi:=$ Intertwiner of the irreducible $A_{q}(g)$ modules labeled by w_{0}.
- $\Gamma:=$ Transition matrix of the PBW bases of $U_{q}^{+}(g)$.

The both Φ and Γ are associated with a pair of reduced expressions of w_{0}. Take the pair common.

Generalizations

For arbitrary classical simple Lie algebra g, let w_{0} be the longest element of its Weyl group.

- $\Phi:=$ Intertwiner of the irreducible $A_{q}(g)$ modules labeled by w_{0}.
- $\Gamma:=$ Transition matrix of the PBW bases of $U_{q}^{+}(g)$.

The both Φ and Γ are associated with a pair of reduced expressions of w_{0}. Take the pair common.

Theorem (K-Okado-Yamada 2013)

$$
\Phi=\Gamma .
$$

More aspects have been explored in [Tanisaki 2014] and [Y. Saito 2014].

Generalizations

For arbitrary classical simple Lie algebra g ，let w_{0} be the longest element of its Weyl group．
－$\Phi:=$ Intertwiner of the irreducible $A_{q}(g)$ modules labeled by w_{0} ．
－$\Gamma:=$ Transition matrix of the PBW bases of $U_{q}^{+}(g)$ ．
The both Φ and Γ are associated with a pair of reduced expressions of w_{0} ． Take the pair common．

Theorem（K－Okado－Yamada 2013）

$$
\Phi=\Gamma .
$$

More aspects have been explored in［Tanisaki 2014］and［Y．Saito 2014］．
「いっペーにふぇーでーびたん! 」
（＂Thank you so much！＂in Okinawan）

