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Introduction (TE = YBE)
Yang Baxter equation (YBE):

R12(X)R13(XV)R23(V) = R23(y)R13(Xy)R12(X)

Tetrahedron equation (TE) is a 3D generalization of YBE:

R124 Ri3s Ryzg Rasg = Ryse Ryzg Riss Rigs
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Regarding the spaces 4,5,6 as auxiliary and writing it as
R124 R135 R236 = R456 (R236 R135 R124)(R456)_1

one finds TE = YBE up to conjugation in the auxiliary space 4,5,6
= a quantization of YBE



Introduction (TE = YBE)
Yang Baxter equation (YBE):
Rlz(x)R13(Xy)R23(y) - R23(y)R13(Xy)R12(X)
Tetrahedron equation (TE) is a 3D generalization of YBE:

R124 Ri3s Ryzg Rasg = Ryse Ryzg Riss Rigs

Regarding the spaces 4,5,6 as auxiliary and writing it as
R124 R135 R236 = R456 (R236 R135 R124)(R456)_1

one finds TE = YBE up to conjugation in the auxiliary space 4,5,6
= a quantization of YBE

This almost trivial observation is known to yield infinitely many solutions to YBE
in a matrix product form having applications to statistical mechanics etc.

Aim: Extend this 3D approach to the Reflection equation.



Quantized reflection equation

(Ordinary) reflection equation (RE):

L12(X/V)K2(X) L21(XV)K1(V) = K1(y) L12(XV)K2(X) L21(X/y)



Quantized reflection equation

(Ordinary) reflection equation (RE):

|—12(X/y)K2(X) L21(XV)K1(V) = K1(y) le(xy)Kz(X) L21(X/y)

Quantized reflection equation := RE up to conjugation

(L12K2L21K1)j< — K(K1L12K2L2l)

where L and K also act on the auxiliary space and K is the conjugation.
If all the space indices are written out explicitly, it reads

L123Ko1Lo15K16K3456 = K3as6K16L125K24L913
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A solution to the quantized RE (1/2)

g-bosons and their Fock spaces (q: generic)
Fy=,,50Clm), F; =&D,,50C(m|, (mm’) = (¢*)mdém,m', (@m =11;21(1—4q")
aflm) = |m+1), a|m)=(1-¢"")|m—1), hlm)=mlm), k=g"*?

Fye, F;z, At, A~ K := the same objects with ¢ replaced by ¢?.

Set V = Cvy @ Cv; ~ C2 and define L and K as follows:
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Set V = Cvy @ Cv; ~ C2 and define L and K as follows:

LeEnd(VRV ®F,) K € End(V ® Fy)
L(v, ® vg ® |m)) = Zv,}, R vs ® Lg‘;\m) K(va ® [m)) = Zvﬁ ® K5 |m)
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A solution to the quantized RE (2/2)

For this L and K, the quantized RE is 16 linear equations on K ¢ End(Fpe ®@ Fqg @ Fp ® Fy)

Example. o4 g1ga — 1ekoA~ ok, K] =0,
(1ea ®10k + 1@k®A™ ®a" )X
=X(A”®at @A ®k + A~ ®k®l®a — K®a ®9K®k),
(19keK®a )X = K(AT®a K®k + K®a' 9 A" ®k + KRk®1®a™),
[19k@K®k, K] = 0.

Fix the normalization by % (|0) ® |0) ® |0) ® |0}) = [0) ® |0) ® |0} ® |0).



A solution to the quantized RE (2/2)

For this L and K, the quantized RE is 16 linear equations on K ¢ End(Fpe ®@ Fqg @ Fp ® Fy)

Example. o4 g1ga — 1ekoA~ ok, K] =0,
(1ea ®10k + 1@k®A™ ®a" )X
=X(A”®at @A ®k + A~ ®k®l®a — K®a ®9K®k),
(19keK®a )X = K(AT®a K®k + K®a' 9 A" ®k + KRk®1®a™),
[19k@K®k, K] = 0.

Fix the normalization by % (|0) ® |0) ® |0) ® |0)) = [0) ® |0) ® |0} ® |0).

Proposition. The solution to the quantized RE is given by

K = theintertwiner of the Soibelman representation of the quantized coordinate ring
Aq(Sp4) labeled by the longest element of its Weyl group.

Remark. The intertwiner has been obtained explicitly in [K-Okado 2012], which yielded
the first solution to the 3D reflection equation proposed by [Isaev-Kulish 1997] .




Matrix product construction of S(z) and K(z)

¢ Fy Ins>:Z%EFq (s=1,2)

m=0

[sm)

q232 )m

Introduce the boundary vectors  |xs) = )

m=0 (

Conjecture:  X(|xs) ® |1k) ® [xs) ® k) = |Xs) @ [Mk) @ |Xs) @ [mk) (1 <8<k <2)




Matrix product construction of S(z) and K(z)

Introduce the boundary vectors |xs) = Z [sm) €Fz |ns) = Z (bﬂ eF, (s=1,2)

282 2
m>0 (7% )m m>0 “)m

Conjecture:  X(|xs) ® |1k) ® [xs) ® k) = |Xs) @ [Mk) @ |Xs) @ [mk) (1 <8<k <2)

11 1,
Forany n > 1 use the vector spaces with labelslike YV = /®" and Vv — Lfl’ RV

Construct the operators in matrix product forms as
, 1 2 o 1
S¥,(2), 555 (2) € End(V @ V) (5,8 = 1,2) K¥(2), K" () € End(V) (k, k' = 1,2)
STa(2) = Tra(z"*L1,2,a- - - L1,2,4), K (2) = Tra (2" K10 -+~ K1,4).
Si% (2) = (XS|ZhaL1121a T Llnﬁna‘Xs’> JR1' (Z) = (T’]H::lzh':"fi lia " 'Rlﬂal??k**)-

Here a denotes the auxiliary space. The matrix elements are expressed in 3D diagrams, e.g,

575-
a:ﬂ, |X#'f}
82 *
5 In
Ss,s’(z)’r,ﬁ o L s . 3
CIHB . e
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Main result
A pair (S(z), K(z)) satisfying

S12(X/¥)Ka(X) Sp1(xy)Ki(y) = Kq (y) S1a (XY)K; (X) Sy (x/y)

with S(z) further satisfying YBE among itself is called a solution of RE.
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with S(z) further satisfying YBE among itself is called a solution of RE.

Theorem:
The type A case of the table is a solution of RE. Admitting the conjecture on
the previous page, all the pairs for the other g are also solutions of RE.

g R matrix K matrix
A0, | S(2) K“(2),
DAy | SM(z) | KM(2), K13(2), K2 (2), K*2(2)
4?1(11) $2:1(z) K21(z), K22(z2)
(1) S1:2(z) K12(2), K22(z)
D:‘:,.,l} 52,2(3) Kz,g(z)
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Remarks.
Str S=5" and their YBE were proved in [Bazhanov-Sergeev 2006] and [K-Sergeev 2013].

They are the y,(g) quantum R matrices of the fundamental representation (for 5)
and the spin representations (for S ) for some p.

A similar result on G, Reflection equation is known [K 2018].



