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The Bethe ansatz equations connected to the Uq(X‘,”) algebra are studied at g = exp(2wi/
(I + g)), with [ being a level and g the dual Coxeter number. Based on a “string hypothesis” in
the thermodynamic limit, the central charges relevant to the X(,” restricted solid-on-solid models
and their fusion hierarchies are determined in two critical regimes. The calculation leads
naturally to a generalized conjecture on the Rogers dilogarithmic function identity for an
arbitrary pair (X', ), which includes the earlier one for the simply-laced cases X{""= A’ DV
and E((,l%g

1. Introduction

Through the last few decades the Bethe ansatz has been recognized as a fairly
universal structure in integrable systems in quantum field theory and statistical
mechanics. A variety of models are known to share common Bethe equations and
have been analyzed in a unified perspective. Among others, examples of particular
interest are those models connected with the affine Lie algebra XV and its
g-deformation U (X("). In ref. [1] the Bethe equations for such systems are
formulated in terms of the root system of the associated algebra.

The purpose of this paper is to study the U(X{") Bethe equations at g =
exp(2mi/(l + g)), where [ is a positive integer and g denotes the dual Coxeter
number. The results are relevant to the critical level-l X restricted solid-on-solid
(RSOS) models and their fusion hierarchies. More specifically, we shall do a Yang
and Yang type thermodynamic calculation [2] and extract the central charges [3] in
two critical regimes from low-temperature asymptotics of the specific heat capacity
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for an infinite system. As an evaluation of the central charges, this is yet another
but in principle equivalent approach to calculating the finite-size corrections to the
ground-state energies [4]. The former route, however, has been taken in relatively
fewer works compared with the finite-size correction approach for which one finds
an immense literature (see for example ref. [5]).

In refs. [6,7] Bazhanov and Reshetikhin executed such a program for the
simply-laced algebras A, DV and E{) ;. Their results were relevant to the fusion
A® RSOS models built in ref. [8] and went even further beyond the existing list of
solvable RSOS models. The present paper generalizes their result into arbitrary
XD, Besides the A RSOS, the models themselves to which the results apply are
yet to be constructed (remark 2.5). Some models of such sort are available in the
“non-fusion” case for B, CO, DD [9] and GV [10]. (See also ref. [11] for AD)
and A9 _ )

A fascinating feature of Bazhanov and Reshetikhin’s calculation [6,7] is that the
central charge is naturally expressed by the Rogers dilogarithmic function L(x)
through combinations of the following quantity:

Y L(f¥), (1.1a)

1 x({log(l—y log y
( ( )+ dy, 0<xx<1, (1.1b)

where the entry 0<f{® <1 (1 <a<r, 1 <m<!—1) is determined purely from
the Lie algebraic data. The authors of ref. [7] have used the conjecture [12] that the
quantity (1.1a) is equal to

! dim X,
Tg““ —r for X(rl) = A(rl), Dfl) and E(61,)7,8’
which is the well-known Wess—Zumino-Witten (WZW) value (—rank) [13]. In
fact, the proof had been essentially given for X = A in refs. [14,15] and for
XM = AD by Kirillov [12]. Here we generalize the conjecture to arbitrary X{" as
follows:

6 t,l—
ks

r 1
— X X L(f,‘,,"))=—Tr—r viz1, (1.2)
a=1 m=1 )

where the vital factor , (1 <a <r) is the integer defined by t, =2/ a,|* with a,
being the ath simple root in the normalization |long root | 2 =2. Again the entry
@ is specified purely from the pair (X", I) (see (A.1c)). The simply-laced case
(1.1a) corresponds to the situation ¢, = 1 for all 1 < a <r. The conjectural formula
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(1.2), which is remarkable in its own right, is the key to our calculation of the
central charges by the Bethe ansatz thermodynamics. It has been supported by
numerical experiments for any (X, I) with small levels / and ranks r. (See the
remark after (A.1d) for the case /=1.)

The outline of the paper is as follows. In sect. 2, we formulate the Uq(X(,”)
Bethe equations in terms of the root system following ref. [1] and thereby fix the
notations. Thermodynamic quantities are evaluated in terms of “string” and
“hole” densities. As a special feature for the level-/ RSOS models at criticality, we
employ an hypothesis (2.7) that for “color” a, only those strings with length <1t/
contribute to the thermodynamic quantities. The central charge ¢ is expressed
through the Rogers dilogarithmic function with arguments g{* (+w). We also
include an interesting result on high-temperature asymptotics of the entropy. In
sect. 3, the quantities g (£ ) are identified with those f{*’s attached to various
subalgebras of X" at various levels depending on the regime. Then the resulting
values of ¢ are compared with several known cases with perfect agreement. The
comparison is mainly based on the one-point function results of the RSOS models
in refs. [16-19]). Sect. 4 contains a summary and discussion. In particular, we
indicate further possible generalizations and present the extended results on the
central charges for such situations. Appendix A gives a formulation of the
dilogarithmic function identity (yet to be proved), each defined for the pair (X", /)
where [/ € 7 _ , corresponds to the level. The description of the important quantity
£ is partly based on Kirillov and Reshetikhin’s theory [20] on finite-dimensional
representations of yangians. We include a few results and conjectures on the
explicit form of the f{* for exceptional Lie algebras. The conjectured generaliza-
tion of the dilogarithm identity in ref. [12] appears to be invalid for the non-
simply-laced algebras due to the lack of the factor ¢,. (See note added.)

2. Thermodynamics of the U_(X(") Bethe ansatz system

We shall study the Bethe equations relevant to the level-/ X RSOS models at
criticality. Besides the algebra X" and the level / (and the system size N tending
to infinity), the equations contain two more integer parameters s and p subject to
(2.4). They are supposed to specify the type of fusion sw, of the corresponding
RSOS model in the sense explained in remark 2.5.

2.1. THE U,(X{") BETHE EQUATIONS

Let X be one of the rank-r non-twisted affine Lie algebras [21] AP (r > 1),
B (r>2), CY (r> 1), DY (r > 3), EY, EY, EY, EM and G¢, and U (X®) be
its g-deformation of the universal enveloping algebra [22]. We let a,, w, (1 <a <r)
denote the simple roots and the fundamental weights of the classical part X,,
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respectively. Introduce the bilinear form (|) on the dual space of the Cartan
subalgebra of X, as follows:

2(a lw,) 2(a,lay)

= C . =
(aalaa) 5ab7 ab (aalaa)

We normalize the roots so that |long root | 2 =12 and set

= (Cartan matrix),, of X,. (2.1)

2
¢ (aalaa) ’

By definition ¢, =1 if «, is a long root and otherwise ¢, =2 for B,, C,, F, and
t, = 3 for G,. One may equivalently define ¢; as t,=a;/a,”, where a; and a,"’s are
the so-called Kac and dual Kac labels, respectively (cf. ref. [21]). For later
convenience we also introduce the notation

t l<ax<r. (2.2)

B, = ; —C, t,=max(t,, 1), 1<a,b<r. (2.3)
ab
It then follows that B,, = B,, is the symmetrized Cartan matrix. In table 1, we list
the Dynkin diagram with the numeration of its nodes, the dimension and the dual
Coxeter number g for each X, along with those 7, # 1.
Fix the integers /, p and s satisfying

I>1, 1<p<1 and 1<s<t,l-1. (2.4)

Choose further any positive integer N such that

ta
Na=Nst—(C_1),,a=Ns(C*1)aPEZ forall1<axr. (2.5)

b

Note then that the N, are in fact non-negative. Now we are going to write down
the U, (X!") Bethe equations at g = exp[2mi/(I +g)], which is, in the sense
explained below, related to “level-/ X" RSOS model with type sw, fusion”. They
are the following system of simultaneous equations for the complex variables
(e, 1<a<r:

el

g b=1k=1 sh( il (1 - P — i(a, |ab)))

for 1<j<N,, l<axr, (2.6)

where L =/+g and £(® is some phase factor. Several remarks are in order.
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TABLE 1
Xr Dynkin Diagrams dim g
A, o0—O— — — — —0—0 r242r | r+1
1 2 r-1 r
2
B, o0—O0— - - - —0=>0 2r24r | 2r-1
1 2 r-1 r
2 2 2
C, o—0— - — - —0<0 21241 | r+1
1 2 r-1 r
r-1
D: _ 2r2.r| 2r-2
1 2 2 r
6
Eg 78 12
1 2 3 4 5
7
E; O—O0—0 133 18
O C \J A4 \J
1 2 3 4 5 6
TS
Eg 0—0—0—0—0—0—0 248 30
1 2 3 4 5 6 7
2 2
F4 0—O0=>0—20 52 9
1 2 3 4
3
G, o=>0 14 4
1 2

The classical simple Lie algebra X,, the Dynkin diagram, the dimension of X, and the dual Coxeter
number g. In each Dynkin diagram, the nodes are numerated from 1 to r. The parameter £, (2.2) has
been given above the node @ only when 1, # 1.
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Remark 2.1. The Bethe equation (2.6) with all 2{“ =1 corresponds to a special
case of ref. [1], where Uq(X(,")) (k=1, 2, 3) are considered with more general
choices of N, under the presence of inhomogeneity for the spectral parameter as
well as the representation parameter sw,. Their equations, in which L is a generic
parameter, are relevant to the spectrum of row-to-row transfer matrices for
U,(X") vertex models.

Remark 2.2. 1t was shown for the A"’ case [6,7] that the Bethe equations for the
RSOS models acquire some non-trivial phase factor .(2}") as above. Although its
explicit form is not known in general, we expect, as in the D" and E{} ; cases [7],
that its effect would be properly taken into account in the thermodynamic limit by
the forthcoming hypothesis (2.7) on the solution of (2.6).

Remark 2.3. The integer N stands for the length of a row of a square lattice,
therefore the thermodynamic limit is achieved when N — . The quantities u{”
and N, are called “pseudo momenta” and the “completion numbers of the color
a’’, respectively.

Remark 2.4. The completion numbers (2.5) have been chosen so that
def
W o0 = Nsw Y _N,a, =0, which is relevant to the ground states of our RSOS

models. Frgm the viewpoint of spin chains and vertex models, the w,, corresponds
to the “total magnetization” and the choice (2.5) implies the “completely antifer-
romagnetic sector”. See e.g. ref. [23] for an argument concerning the Heisenberg
chain.

Remark 2.5. By “level-l X" RSOS model with type sw, fusion” we mean a
“model” for which we can in general only provide the following very obscure and
conjectural description.

Suppose ¢ is generic and let V, denote the finite-dimensional irreducible
U,(X,) module with highest weight w € ®,_,Z , y,. Consider U (X ") and the
assomated spectral parameter dependent quantum R-matrix R(v) € Hom(V ®
V', V' ® V), where the V and V' are chosen for each algebra as follows:

for U, (A) and U,(CP),
)

Vw
V., for q(B“) ,
vV for E®),
V=Vi= V%ea V, for E );,
w, U,
V.. for U, (F"),
V., for U, (GS"),

(v, .v,} forU,DD),

e

V.. V.)  for U(ED).
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Explicit forms of such R(v)s may be found for U (X{") = U(AD), U (C) [24],
U,(G§") [25] and U(BL"), U (D{") [26]. Now starting from these fundamental
R(v)’s, do the fusion procedure (cf. ref. [27]) using every possible degeneracy point
det(R(v = vy)) = 0 to get as many inequivalent solutions as possible to the Yang—
Baxter equation. The resulting R-matrices in general act on the tensor product of
reducible Uq(X,) modules. The first conjecture is, the totality of such generically
reducible Uq(X,) modules will contain the one isomorphic to a natural g-analogue
W,(p, s) of W(p, s) (A.4) for each s and p (cf. ref. [20]). Assuming this, one can in
principle find R*“»(v) € End(W,(p, s) ® W,(p, 5)) to be called a type sw, fusion
R-matrix. Apply next the so-called vertex-SOS correspondence transformation [28]
for the R*“»(¢) to produce a solvable face model equipped in general with edge
and site variables (cf. ref. [8]). Finally, one specializes to g = exp[27i /(I + g)] and
restricts the site variables to the level-/ dominant integral weights of X" Then the
second conjecture is, for each choice of [, p, s as in (2.4), there exists an
admissibility condition on adjacent site and edge variables under which all the
allowed Boltzmann weight functions become well defined and fulfill the (gener-
alized) star—triangle relations among themselves. If this is valid, the resulting
Boltzmann weight functions define an object to be called the level-l X{ RSOS
model with type sw, fusion.

The above “construction” is indeed known to work essentially for A(,” [8] and
G{" with s =1, p =2 [10]. It is also natural to expect that those models in [9] have
this origin as well. In fact, they are known even to admit an elliptic function
generalization. (For G{ [10], this is still a conjecture.) Some background responsi-
ble for this may be found in ref. [29].

2.2. THE THERMODYNAMICAL CALCULATION

We shall employ the following hypothesis on the solution of (2.6).

Hypothesis (“String Hypothesis™). Let 4" (1 <a <r, m > 1) be the number of
the u\® that tend to a pattern {u, ,, +it; '(m +1—2n)|1 <n <m} forsomeu,,, €R
in the limit N — «. Then

t,!
>
m
. m=1
lim

=1 foralllgaxr. (2.7)
N o

a

This has been actually observed to be the case for a few simplest cases of A"
[6], which we believe generally true. We call the pattern {u,,, +it; (m+1-
2n)|1 <n <m} a string of color a, length m at real center u,,, or just a color-a
me-string for short. The hypothesis means that for color a, only those strings with
length <,/ contribute to the thermodynamic quantities. This is a natural exten-
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sion of the one employed in ref. [7]. The real centers of the strings will form
continuous distributions. In the working below, we will mainly use the letters a, b,
¢, d as the color indices and j, k, m, n as the length indices. In case a confusion
might arise, the algebra dependence is also shown by a superscript, e.g. the Cartan
matrix C*”. Fourier transformation of a function A(x) will be denoted by A(x)
and normalized as

1 e, _ N @ .
h(u) = Ef_ h(x) e dx,  h(x) =/_ h(u) e ™* du.

We find it convenient mainly to work in the Fourier transformed picture and often
suppress the arguments of functions as h = h(u), i = A(x).

Now the thermodynamical calculation goes as follows (cf. ref. [6,7]). Consider
the logarithm of both sides of (2.6) and sum them up over those u{*’ belonging to a
color-a m-string at real center u(l <a <r,1<m<t,). If one introduces the
string and hole densities [2] p{(u), o{(u) for each color a and length m, they are
shown to obey the equation

5paqf)a,m(u’ S/tp)

= p52(4) + o(u)

—~

Iy

r k
+Y Y Z/ dv ¢, (u—v =ity "(k+1=2n), Cp/t,)p(v), (2.82)
b=1k=1n=1

™
iL 8 sh(z—L(u+zta1(m+l—2])+tA))
am(u A) - P Z lOg ar
™ Uj=1 sh(i(u+zt;l(m+1—2])—lA))

(2.8b)

Passing to the Fourier component, this is equivalent to
ro
8, AL =@+ Y Y M, ALY forl<a<r, 1<m<tl. (29)
b=1k=1

Here the A" and M,,, (1 <a, b<r,1<m<t,l,1<k<t,l) are defined as
M, =M,, =B, +28,(ch(x/1,) — 1), (2.10a)

sh(min(m/t,, k/t,)x)sh((L — max(m/t,, k/1,))x)
sh(x/t,,)sh( Lx) ’

((Lymk _ A(LYkm _
Aab _Aba -

(2.10b)
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where B,, and t,, are given in (2.3). We will also use the following function K"
(I<a<sr,l<sm,n<t,l—1):

Krm=g§, +————(Clhu-0-25 1, 2.11
a a mn ZCh(x/ta) ( mn mn) ( )

which involves the Cartan matrix of A4,, ;. Given these definitions, one can
readily check the following identities:

N sh(mx/t,) . A
it = ey A=Al (2120
tl—1

2ch(x/t,) Y, ADkmKmn =5, forl<a<r, 1<k,n<t,l—1. (2.12b)
m=1

Set m=rl, x—0 in (2.9) and simplify the right-hand side by the relation
Ll kpP0) = st /1 (C™1),, derivable from (2.5) and the hypothesis (2.7). The
result turns out to be ¢.7(0) = 0, which means that

o (u)=6P(x)=0 forallu, xR and I<acxr, (2.13)

since the density must satisfy U,E“;)(u) > 0, Yu € R. From the same equation one can

then express {9 as

r rotpl—1

PR =Yy APy = X X L Yuu My AP for L<d <r, (2.14)

dp“’p p
a=1b=1 k=1

where Y is the inverse of the r X r symmetric matrix (M, A%, _, . In
fact, by the definition Y satisfies the following relations for 1 <a, b <r:
o, . sh(mx/1,)
Y M APy, =5, ————,
R sh(lx)
N sh(kx/t.)
Y, M, Afik=§ —— " 2.15
bgl ab™bhc“th c ac Sh(lX) ( )

Eliminating 5{%) by (2.14), one finds, using (2.12a) and (2.15), that (2.9) reduces to

roo =1
8,, A =60+ Y ¥ M, AU forl<a<r, l<m<t—1.
b=1 k=1

(2.16)
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We further rewrite this by multiplying K 2m and summing over m=1,...,¢,/—1
with the help of (2.12b) to arrive at

=1

- r
= Krmglar 4+ Y Z JHs™ forl<a<r, 1<sn<tl—1.
b=1 k=

Here, /7 =M, Tl - LK ""4)mk is defined in the range 1 <a, b<r, 1<n<t,l—
1<k <1t,/—1 and has the form

fnk Mab Sh(x/ta) 8
@ 2ehtEe,) | sh(x/t,,) P

w/la=1 sh( jx /t,
= sh(—x/t—;,,%( tp(n+ D —t,j .k +61b(n—1)+zuj,rak) » (2'18)
wherein the sum X%7//«~" is to be understood as zero if 7, > 1,,.

Now we turn to the calculation of the thermal energy density &. So far, the
explicit formula for the eigenvalues of the row-to-row transfer matrix is known only
for A" fusion models (cf. ref. [7]) and those examples in the latter or ref. [1]
concerning the “non-fusion” case in the direction of the auxially space. Therefore
we proceed by postulating the following form that seems to be a natural extension
of the egs. (4.5) and (4.5) in ref. [7] for the A" case:

=€ if du ¢, ,.(u, s/t,)p(u

Z[ dxA(L)""(x) 5P(x). (2.19)

Here € = + is the sign factor that specifies the regime in consideration (cf. ref.

[6,7]). See (2.8b) for the definition of ¢, ,(u, s/t,). Again one can simplify this
expression by means of (2.12a), (2.14) and (2.15) as

10—
E=e&,+e Z[ duA(’)""(u)p(”)(u),

1 = A . A
£y= 5 [ dx AP Y, (0 AR (). (2:20)
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Next we evaluate the entropy density % responsible for the combinatorial degrees
of freedom to arrange the strings and holes. Taking (2.13) into account, it is given
by

-1

r ! s
Z= L L [ du((pP(u) + 0(w)) log(pf(u) + o (u))
a=1 m=1 —

—piP(u) log piP(u) — o\ (u) log a,ff)(u)). (2.21)

Having the thermal energy and the entropy at hand, we are now in a position to
seek the equilibrium state. Denoting the temperature by T=8""!, the condition
8F /6p™(u) =0 for the free energy density & =& — T.% with the constraint
(2.16) leads to

€t 6 6

ah(rmi/3) ,E [ dw Kz o) log(1 + exp(Be(1))

rogpl—1

-TY Zf dv J75 (u —v) log(1 + exp(—Be?(v))), (2.22a)
b=1 k=1"—=

€@ =T log(a”/p'?), (2.22b)

forl<a<r,l<sn<tl-1

With the aid of (2.22) one can extract the low-temperature asymptotics of the
entropy as follows [30,31]. Shift the variable u —»u — (2/t,7) log T in (2.22). For
T < 1, the result reduces to the following equation for the function

e @) S e u — 2 /t,7) log T)/ T+

t,i-1
3€1,8,,0,, e/ = Z f dv K™ (v) log(1 + exp(¢((u —v)))

rotpl—1

- Z[ va:b"(u) log(1 + exp( — (1 —v))),

b=1 k=1"7—

(2.23)

which implies that ¢{“(u) remains finite in the low-temperature limit 7 — 0.
Considering the same shift for the Fourier transformation of (2.17) and comparing
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the result with the u-derivative of (2.23), one deduces the following behavior valid
at u — o (cf. refs. [30,31]):

(a) u
A = — = (et ) <5
26 (a) u
o)== —(1-f (Be“”(u))) ( ), (2.24)

p

where f(¢)=(1+e®)"! is the Fermi distribution function. By using (2.22b) and
(2.24) in (2.21), we find the asymptotics of the entropy for T — 0,

4eT 7, el o
F=17 L T [T do(f(e) loxf(¢) + (1=£(9)) log(1=f(9)).

a=1 m=1
(2.252)

Here we have attached an extra factor 2 to take into account the contribution from
the negative large u discarded by firstly passing to the limit u —»>u —
(2/t,m) log T, T— 0. Introducing g\ (u) = flexp(ei(u))) further, the entropy
(2.25a) is expressed in terms of the Rogers dilogarithmic function L(x) (1.1b) as

8eT
F=— Z Z (L(g5(®)) — L(g{( —®))). (2.25b)

t 7T a=1m=1

Finally we relate this asymptotic expression to the central charge ¢. The argument
of ref. [4] implies that 2% /dT* = —arc/3vy in the low-temperature limit, where
the Fermi velocity is chosen to be v =1¢,/4 in our case. Combining this with the
relation 3./dT = —d% /dT?, we arrive at the expression for the central charge,

la

6 r
ez T T (L) - L(s8(-=)) (2:26)

The quantities g{¥(+ ) in general depend on the regimes e = +1 and are to be
determined from (2.23). In the next section we will see that they are given by the
purely Lie algebraic data f{* described in appendix A. We remark that entropy of
a form similar to (2.25b) has been obtained in ref. [30] for the higher spin
Heisenberg chain.

2.3. HIGH-TEMPERATURE LIMIT

Here we study the high-temperature behavior of the equilibrium free energy

(-1
=e&,— T Z f du AL (u) log(1 + exp(—BeP(u))).  (2.27)
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When T - «, the leading part of the asymptotics of the €{“(u) is expected to
become a constant. The constant solution to (2.22) in this limit can be extracted
from (A.1c’) as

f(exp(Be(u))) =fi> as T — oo, (2.28)

where f on the Lh.s. is the Fermi function specified after (2.24) and the quantity
£ has been described in the appendix. Combining (2.27) and (2.28), we have

-1

lim — = % ADsm(x = 0) log(1 - £7). (2.29)
Tow m=1

Substituting (A.7) into this and using (2.10b), we obtain an interesting result,

F
lim %= — lim - = log Q7. (2.30)

T Tox

Here the quantity Q7 is the “yangian character” at q = exp(2wi /(I + g)) detailed
in appendix A. When T — o, the entropy density % is generally expected to
become lim, _,.(1/N) log(dim #(N)), where Z(N) denotes the space on which
the length-N row-to-row transfer matrix acts. Thus the result (2.30) implies that
lim,, _, (dim #(N))"/N = Q' which is consistent to our picture for the “RSOS
model with fusion type sw,” in remark 2.5. For X" = A, this has been observed
in ref. [6].

Remark 2.6 (by V.V. Bazhanov). In ref. [39] the thermodynamic Bethe ansatz
equations for non-critical RSOS models of ADE type have been conjectured. The
corresponding lattice models are not known in general and it would be interesting
to find them. These equations enable one to calculate the central charges ¢, the
dimension of the perturbation A, (thermal exponent), the spectrum and the
S-matrix of the excitations of the corresponding scaling field theory near criticality.
In particular, for X(V=E{’, /=2, p=5=1, one gets [39] in this way ¢ =1/2,
A,=1/8 and the S-matrix identical to Zamolodchikov’s one for the magnetic Ising
model [36]. [Eq. (5.4) in ref. [39] has been missprinted. The correct formula reads
as ¢ =2 rank(G)/(g + 2) and the words “minimal unitary” before the equation
and “by operator ¢, ;)" after it should be omitted.] In addition, eqgs. (2.30) and
(A.12a) of the present paper in this case gives

e’ =1+V2, (2.31)

in high-temperature limit. This means that the corresponding lattice model (if any)
should have the largest eigenvalue of the incidence matrix equal to (2.31).
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3. List of the central charges

The remaining task in the central charge calculation is to specify the g{®(+ )
= fexp({®(+ =))) in (2.26) by using (2.23). We do this in subsect. 3.1 and thereby
list the values of c. As it turns out, g{®(+) will be identified with the Lie
algebraic data f@ described in appendix A attached to various (X'", I") with
XY being a subalgebra of XV, Subsect. 3.2 is devoted to comparisons of the
results for ¢ with known cases.

3.1. DETERMINATION OF g{@( + %)

Consider the limit u — +% in eq. (2.23). Since K"™(u) and J*(u) decay
exponentially, the quantity g{9(+ ) = (1 + exp(¢{“(+)))~! satisfies

tl—1
3€1,8,,08,, eTm/2= — 3 K7(0) log gi( £ )

a“pasn

I

m

~

tl—1

+ Y X Ji0) log(1 —gP (%)),  (3.1)
b

=1 k=1

if, and as we assume, the ¢'“(u) approaches to ¢{®(+ %) quickly enough. In the
appendix, we have defined, for each pair (X{", /), the quantity f{(1<a<r, 1<
m < t,l — 1) that solve (3.1) with zero on its left-hand side. See (A.1c’). Thus we

obtain
g (+w)=f" foralll<a<r, l<m<t,l-1. (3.2)

On the other hand, we have a divergent left-hand side in (3.1) for g{¥(— ) whose
sign also depends on the choice € = +1. Such an equation is fulfilled by the
behavior

u— —w

e=+1: gu)y—> +0 for(a,m)eG_,
e=—-1: gu)“=—=1-0 for(a,m)eGCG_, (3.3)
e=+1: 0<g¥(—x) <1 for (a, m) € G,,

for some subset G, of G¢{(a, m)|1 <a<r,1 <m<t,l— 1}. In order to find the
G,, we consider the following linear equation for the unknown constants
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h® (a, m) € G, which corresponds to the proper cancellation of the divergent
terms in (3.1):

t,—1
Y KI'M(0)R® for e = +1
m=1

8palsn =1 e (a, n)eG. (3.4)
Y X H0haY fore=-1
b=1 k=1

The solution consistently satisfies 4 > 0 for all (a, m) € G and determines the
set G, via the rule 4% >0 o (a, m) € G, as

G.={(p,m)1<m<t,l-1)}, (3.5a)
a, st,/t)|l<a<r] ifs/t €2,
6 = | (@ sta/ty) boits/, (3.50)
GnG(s, p) if s/t, &2,
§—Sg §—Sg
G(s, p)={|a, ,a, +1llllgaxr, t,=1 (3.5¢)
[P tp
U{(a,s—so),(a,s),(a,s—s0+tp)ll<a<r,ta=tp},
so=smod ¢,, 0<sy<t,— 1. (3.5d)

These patterns are conveniently visualized in a width-r tableau whose ath column
(1 <a <r) consists of the 7,/ — 1 rectangles each having the depth 1/¢, and the
width 1. The mth rectangle from the top of the ath column corresponds to the

(a)

(d)

(c)

Fig. 1. (a) The tableau visualization of the sets G and G, for A’ /=3,5s=1o0r 2, p=4. The 2X6

outer rectangle represents the G while the hatched region signifies the G .. The G and G, for Dg” and

E{ with the same /, s, p are also represented by this figure. (b) The sets G and G, (hatched) for

B{’,I=2,5=1, p=2.(c) The sets G and G, (hatched) for C{V, I=4,1<s<7, p=2.(d) The sets G
and G, (hatched) for F{", /=3 1<s<35, p=4.
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Fig. 2. (a) The sets G and G _ (hatched) for A, [=6,s=3,¢,=1.

s=7

Fig. 2. (b) The sets G and G_ (hatched) for BY?, /=4,1<5<7, t,=72. When s is even, the tableau
also corresponds to the Gand G_ for B, I=4,5/2,1,=1.
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s=4 =5

Fig. 2. {c) The sets G and G_ (hatched) for C{", /=3,1<5<5,1,=2. When s is even, the tableau
also corresponds to the G and G _ for C{?, /=3,5/2,1,=1.

s=4 s=35
Fig. 2. (d) The sets G and G_ (hatched) for F{", /=3, 1<s5<5, t,=2. When s is even, the tableau
also corresponds to the G and G_ for F{", /=3,5/2,¢,=1.
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=35 s=6 s=17 s=8
Fig. 2. (e) The sets G and G _ (hatched) for G{, /=3, 1<5<8, t,=3. When s =0 mod 3, the tableau
also corresponds to the G and G_ for G§D, I =3, 5 /3, t,=1

element (a4, m) = G. Then we see from (3.5) that the simply-laced algebras
XP=AP, DP and E{), possess especially simple patterns: G, = pth column,
and G_=sth row. In fact, G, (3.5a) is always just the pth column for any X"
irrespective of s. On the other hand, G_ (3.5b) for non-simply-laced algebras
exhibits slightly complicated patterns depending on both s and p. See figs. 1 and 2
for some examples of G, and G _, respectively. To summarize so far, besides (3.2),
we have seen in (3.3) that g{“(—w)=(1—-€)/2 for (a, m)€G, and the G_ is
specified by (3.5). This completely removes the divergence in (3.1) and leaves us
with the following equation for the remaining g‘{¥(— o):

tl—1 r -1

0= ¥ K/"™0)log g(—=)— Y, X JrE(0) log(1—g(—=)),

m=1 b=1 k=1
(a,m)eEG, (b,K)EG,

(3.6)

which should hold for any (a4, n) € G\ G,. A little inspection using (2.11) and
(2.18) then shows that (3.6) in fact decouples into a few independent set of
equations. Moreover, each of such equation sets coincides with (A.1lc,c’) for some
(X", I') and therefore enables us to identify the g{¥(—o)s with those f{’s
{£@ 1(X1D, ")} attached to the data (X", I'). Here we shall only illustrate this
decoupling with two examples, from which the other cases will be easily inferred.
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Example 1: (X, [)=(F{", 3); e = + 1. This case has been depicted in fig. 1d
with the G, for p =4 hatched. As p varies from p=1 to p =4, the “hatched
region” moves from left to right and the 14 g{¥(—x)s, (a, m) € G are determined
as follows. (The union of the sets here and the following example means the one
retaining the muitiplicity of the elements.)

1: {0,0}u {f(a)| c 3)}’

2: {0,0}u { (a)‘(A(l) 3} { (a)|(A(1) 6)}

3: {0,0,0,0,0) { (“)I(A“) 3)} { (a)l( AD 6)}
4: {0,0,0,0,0} U {fI1(BY, 3)}.

(3.7a)

LSRR ST - B N
It

These are essentially derivable by identifying the shape of the “non-hatched
region” G\ G, with the G’s for some (X, ‘Y 1). Notice that the decouplings are
independent of the choice of s. Substltutlng gl —w) (3.7a), g{™(=) (3.2) into
(2.26) and using (3.8) and (A.1a), one gets (3.91) with /= 3.
Example 2: (X", )=(G{",3); p=2; e= —1. The G_ for each 1 <s < 8(=11,
— 1, (2.4)) has been depicted in fig. 2e. Now the “hatched region” corre-ponds to
(“)( ®) =1 and the 10 g{¥(—x)'s, (a, m) € G are determined as

s=1,2,7,8: {1, 1, 1} U{f H(G, 2)} U {£@ 1(AD, 2)},
s=3,6: {1, 1} U{f© (G, 2)} U { £ 1(AD, 3)},

s=4,5{1,1, 1,1, U {2 (AD, ) u {£0 1(AD, 2)} u {£ 1(AD, 3)).
(3.7b)

As these examples show, the g{”(—o)s are evaluated in terms of those f{"’s
associated to various (X", ') with X" < X0,
Having identified the gf,?)(+°0) s with the f{*”s, the central charges are now
computable from (2.26) by means of the (conjectured) dilogarithmic function
identity (A.1a). Below we list the result of ¢ for any choice of the regime e = + 1,
the algebra XV, the level / and the integer parameters s, p obeying (2.4). We use
the notation

, ! dim X,
LX), [) =~ ———= —1 for [>0. (3.8)
I+g
In particular, we have #(X‘V 0) = —r for any X! and employ a natural conven-

tion (A, 1) =L(CLP, 1) =0 for any /. See (3.11) and (3.12) for further proper-
ties. The data dim X, and g are available in table 1. The results for X'V = A},
D" and E{) recover those in refs. [6,7].
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Regime € = +1. The results are independent of s. To present them neatly, we
shall write e.g. a, b€2(X,) to mean that the Dynkin diagram 2(X,) of X,
contains the nodes a and b(1 <a, b <r). Then, using the ¢, (2.2) attached to X,
(not X!.), we have

c=2(XM, - ¥ 2(Xr),
X, eH,

I'/1=min{t, | a €7 (X))} (3.9a)

Here /#, denotes the set of the subalgebras X, of X, whose 2(X.) are obtained
by removing the pth node from the 2(X,). Explicitly, they are given by

AD(r=1); (3.9b)

c=2(AD, 1) -7 (A

p—1

N-2(AP,, 1) 1<p<r.

r—p»
BM(r > 2); (3.9¢)

c=Z(B", 1) -z (AD

p—1

N-2(BL,, 1) 1<p<r-2,

r—p>

=2(BO, 1) ~2(A)_,, 1) —2(AL,,21) p=r—1,r
CO(r > 1); (3.9d)
c=2(CO 1) -Z(AY_,21) ~2(CL,, 1) 1<p<r,
DIY(r>3); (3.9¢)
c=2(D", 1) ~2(A)_,, 1) ~2(D2,, 1) 1<p<r-2,
=2(DM, 1) -z (A}, 1) p=r—1,r.
EQ; (3.9f)
c=Z(E{M, 1) —2(DM, 1) p=15,

=Z(ED, 1) —2(AD, ) —2(AD,[)  p=2,4,
=2(EP, 1) —22(A9, 1) -2(AP, 1) p=3,
=Z(EQ, 1) -2 (AD, 1) p=6.

ED; (3.9g)
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—Z(EP, 1) ~2(DP, 1) p=1,
—P(EP, 1) 2 (AD, ) —Z (A, 1) p=2,

2 (Al
— (B, 1)~ (A 1) (AL 1)~ (A, 1) p=3,
e

—(ED, 1)~ (AP, 1) —Z(AD, 1) p=4,
—Z(EP, 1) ~2(AD, 1) —2 (DY, 1) p=5,
=~ (EY, 1) -2 (ED, 1) p=6,
= F(EP, 1) —F(AD, 1) p=1.
EY; (3.9h)
L(EP, 1) -7 (EP, 1) p=1,
2 (BP, 1) -2 (AD, 1) =2 (B, 1) p=2,
=Z(EY, 1) ~(AD, ) —Z(DM, 1) p=3
=P (EY, 1) —2(AY, 1) - (AP, 1) p=4,
=Z(EY, 1) —2(AD, ) -=2(AD, 1) -~ (AD, 1) p=5,
—F(BD, 1) -2 (AD, 1) -2 (AD, 1) p=6,
=2(EQ, 1) -2 (DY, 1) =7,
=Z(EP, [) -2 (A, 1) p=8.
F; (3.91)
c=Z(EM, 1) -2 (CP, 1) p=1,
=Z(ED, 1) -2(AY_, 1) -2 (AY,,21) p=2,3,
=Z(F", 1) -2 (B, ) p=4
G5, (3.99)

c=Z(GP, 1) -Z(AD,31) p=1,

—2(GP, 1) -Z(AD, 1) p=2.
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Regime € = —1. For the simply-laced algebras X{" = A", D and E{) g, the
results depend only on X'V, I and s [7], while the other cases exhibit a dependence
on p as well. They are given as follows:

S S N
c=,s;/(x<‘> t—)+y(xg'>,z—t—)—g(x§“, [)+r if —€Z. (3.102)

p p p

§—S s—35
=.7(X(,", 0) +_<Z(X<,'>, |- —= 1) —2(X, 1)
tp »
r ) s
Lt 1) — 38,5 if —eZ, (3.10b)
a=1 P

where s, is the integer uniquely specified by (3.5d).
Remark 3.1. The central charge (3.10a) corresponds to the coset pair [32]

1) (1 b
X0 g X o X¢

M

s
level I— — — L.
t, f,

Similarly, the value (3.10b) arises from the decomposition of the three-fold tensor
product

1 1 1 1
XM e XD e YL D XD
[—-s'—1 s 1 /

where s' = (s —5,)/1, and Y, D X" is specified for each non-simply-laced alge-
bra as follows:

M h
XM cyd,
] )
B c D)y,
() (D
ClcAY_,

F}l) c Eg),

G{ CBY.
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Remark 3.2. The following properties (3.11) and (3.12) have enabled us to
present the results (3.9) and (3.10) in a few fairly unified formulas,

(A, 1) =2(CP, 1),

Z(AD, 1) =2(DP, 1),

(
Z(BY, 1)y =2(CP, 1),

(
22(AD, 1) =2(DV, 1). (3.11)

These are just the consequences of the equivalence relations among the classical
Lie algebras X,. On the other hand, when /=1, we have

(XD, 1)=0 for XP=AP(r>0), DP(r>2) and E{)g,

Z(B", 1) =2(A),2)=13, r=2,

(¢} — G (1) = _—__r(r— 1) >
Z(Cr ’1) _ﬁﬂ(Ar_]’Z) r+2 rzl,
Z(ED, 1) =2(AD, 2) = &,
Z(G, 1) =2(A), 3) = £. (3.12)

From (3.8) and (A.1a), both sides of these identities are expressed by the sum
iamec L)) in which the corresponding summation domain G’s possess the
identical tableau visualization.

3.2. AGREEMENT OF THE CENTRAL CHARGES WITH KNOWN CASES

Let us check the agreement of the results (3.9) and (3.10) with the known (and
the conjecturally known) values of ¢ which are mainly implied from the one-point
function calculations [16—19,25,33]. From these works, we shall quote the central
charges in a slightly loose sense in that the GKO-Virasoro character [32] emerges
as the one-dimensional configuration sum (1d sum) (cf. refs. [16—19]). The so-called
regime II to I (respectively III to IV) transition line therein is to be compared with
the regime € = +1 (respectively e = — 1) here and by abuse of terminologies, we
will refer to them for some models without specifications.

The case X!V =A". The expressions (3.9b) and (3.10a) transform into each
other by the interchanges r + 1 & p, s < p [7]. Moreover, for all the known 1d sum
results so far, the generalized level-rank duality is known to hold [34,35], which
implies the above symmetry. Thus we shall exclusively consider the regime € = — 1.
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Unifving the prior established results, / general, r=p=s=1 [33], [, s general,
r=p=1[16] and I, r general, s =p = 1[17], the 1d sum for general /, r, s (p=1)
had been conjectured [8] as the branching function for the coset pair

AP o AD 5 AD (3.13)
level [—3s s l

in agreement with the central charge (3.10a) ( p = 1). It was later verified [19] that
the proposed 1d sum [8] indeed leads to the above pair.

The cases XV = B and DV. The level-d X’ RSOS models corresponding to
s =p =1 were studied [18] in regime III and the 1d sums have been shown to
become the branching function for the pair

XM e XM o5 XD (3.14)
level -1 1 /

The resulting central charges realize (3.10a) with s =p = 1.

The case XV = CD. For the level-/ CV RSOS models with s =p =1, the 1d
sum relevant to the one-point function in regime II is known [18] as the branching
function for the pair

Ch e AY)_, D CIP (3.15)
level r—1 1 r

which yields ¢=2{-1—-I(0+1DQI+ 1) /(r +D(r+1+1). A little manipulation
shows that this coincides with Z(C{), 1) —2(C"), 1) in agreement with (3.9d).

The cases XV = E{3,. The central charge (3.10a) corresponds to the coset pair
EP e EPSEY (k =6, 7, 8 with the levels (/ — 1) + 1 =1, which yield the pro-
posed values by Zamolodchikov [36].

The cases X" =GY". The 1d sum for the vertex model corresponding to
s=1, p=2is known to become the G$" string function on level-1 B{" modules
viewed as the G{" modules via the embedding G§" — B’ [25]. The RSOS model
for s = 1, p = 2 (trigonometric) has been built in ref. [10] with a conjectural elliptic
extention. In view of these and the analogy from the C" case, we conjecture here
that the proposed elliptic version exists and its 1d sum in regime III becomes the
branching function for the pair

G{ & B(31) oGP (3.16)
level /-1 1 I

which yields ¢ = 2(1 — 16 /(I + 3)(/ + 4)). This is indeed equal to (3.10b) with s =1
and p = 2. The first half of the conjecture is actually valid for / = 1 when the G{"
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RSOS model reduces to the hard hexagon model [33]. In this case one also knows
that ¢ = ¥ in regime II, which again agrees with the p = 2 of (3.9)).

4. Discussions
4.1. SUMMARY

In this paper, we have studied the thermodynamics of the Bethe ansatz system
(2.6) labelled by an arbitrary non-twisted affine Lie algebra X!V and the three
integer parameters [, s, p satisfying (2.4). The results are relevant to the critical
level-/ X! restricted solid-on-solid (RSOS) model with type sw, fusion whose
basic features are roughly sketched in remark 2.5. Besides the known examples
[8-10], such RSOS models are yet to be constructed. Our main result in the list of
the central charges (3.9) and (3.10) in two critical regimes. They are compared with
the several known values in subsect. 3.2 with perfect agreement. For the simply-
laced algebras XV = A®, D" and E{),, these results reproduce those in refs.
[6,7].

As a calculational device, we have found it especially clarifying to use the
tableaux that visualize the domain G ={(a, m)|l <a <r, 1 <m <1, -1} corre-
sponding to the summation ¥, .,  L(f{”). With their aid, one can easily observe
how the central charges become various combinations of the WZW values (— rank)
E(X;(”, ") (3.8) for several subalgebras and levels (Xr’,(”, ).

In the course of the derivation, we have made three crucial assumptions. The
first one is the hypothesis (2.7) on the solution of the Bethe equation (2.6) in the
thermodynamic limit. The second one is the form (2.19) of the thermal energy,
which is a natural extension of the one in ref. [7] for A'". As the third one, we have
formulated a generalized conjecture (A.1) on the Rogers dilogarithmic function for
an arbitrary pair (X', /). For the simply-laced cases X" = A, D!V and E{, it
coincides with the earlier one [12]. Besides being an indispensable tool in the
central charge calculation, it appears to be of intrinsic mathematical interest. In
the appendix, we have also raised a few results and conjectures (A.10)-(A.14) on
the explicit form of the important entry f!* (A.lc, ¢’) of the dilogarithmic
function. They are more conveniently presented by passing to the quantity Q'® as
in (A.7). Then the Q'®, which may be viewed as a “‘yangian character”, has been
shown to appear in the high-temperature asymptotics of the entropy (2.30). The
conjecture (A.1) is indeed valid for X" = A" [12]. (See note added.)

4.2. FURTHER EXTENTIONS

Let us discuss possible generalizations of the analysis in the present paper.
The first natural direction would be to study the Bethe ansatz systems related
with the twisted affine Lie algebras X©' =A% _ A@ D@ E®, DY and the
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associated RSOS models. In ref. [11], such models have been actually constructed
for A2 and A?)_,. An intriguing feature therein is, the level- A2 _, RSOS model
[11] turns out to be the level-rank duality partner of the level-r C{ RSOS model
in ref. [9]. As observed for the duality pair (A |, [, sw,, €) & (AP |, r, pw, —¢)
[7,34], it may be interesting to study how the two apparently different Bethe
equations lead to the same result for (A% |, 1) & (C¥, r).

The second possibility is to consider the Bethe equations related to the
“non-unitary RSOS”” models. Roughly speaking, they correspond to the specializa-
tion g = exp[2wit/(l +g)] with ¢t > 1 being an integer coprime with [ +g. In ref.
[37], possible universality classes of such A’ RSOS models have been proposed in
terms of the non-unitary coset models. In particular, their central charges are
combinations of the WZW values at fractional levels. Thus, one might hope that
the analysis of the corresponding Bethe equations may lead to a further general-
ization of the conjectured dilogarithm identity (A.1).

As the third direction of possible extentions, one may analyze the Bethe
equation (2.6) with sw, replaced by s,w, + ... +s,w,, where s, is an integer in the
range 0 <s, <t,/ — 1. It would correspond to considering the more general type of
fusion RSOS models. In fact, such examples have been built in ref. [8] for the A"
case. To avoid a technical difficulty, let us exclusively consider the situation that
for all non-zero s, the (inverse square) root length ¢, are equal. Then, leaving
several justifications aside, one can proceed in a fairly parallel way as in sects. 2
and 3. In particular, the formula (2.26), the g{*Xe«) (3.2) and the equation (3.6)
formally remain unchanged. The crucial change is the left-hand side of (3.4) into
8, .- It governs the structure of the “hatched region” G, hence g{(— ) and
ultimately the central charge ¢ (2.26). One can roughly see how (3.4) changes so by
tracing the following chain; the completion number (2.5); N, =NY,_(C™"),s,,
the left-hand side of (2.8a); ¢,,(u, 5,/t,), the left-hand side of (2.17); &, ./
2ch(x/t,), the thermal energy (2.19); & = (e/2m)X,_ Xy /", dx
ADsom(x)pP(x), the left-hand side of (2.22a); et,8, ,/4ch(t,mu/2), the left-hand
side of (3.1); %etaasan e *1am/2 Noting the assumption that the ¢, are all equal for
non-zero s,, we are led to modify the left-hand side of (3.4) into &, ,. Let G&P
denote the G, specified in (3.5). (We warn the reader against the confusion of this
with the G(s, p) defined in (3.5¢).) Determine the new G, from the modified (3.4)
by the same rule 4{? > 0 <> (a, m) € G, as before. Then the result simply reads

G.= U,_GEP. (4.1)

Namely, the “hatched region” in the generalized situation s, + ... +s,w, is just
the union of “fundamental cases” s,w,. See figs. 3a, b for the examples. Having
known the “hatched region”, one can casily find the solution of (3.6) in terms of
the f{9 for some (X, I). The rest of the calculation is straightforward and we
shall present the final result.
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Fig. 3. (a) The set G and G (hatched) for C{V, /=5, 1<s,, 5s<9, 5,=0 for i#2,5. The three

non-hatched regions respectively correspond to (X", 1) = (A}, 10), (A4, 10) and (CSV, 5) from left to

right. (b) The sets G and G_ (hatched) for C{", I =5, {s|, $5,...,5,} =10, 0, 0, 0, 2, 7} (modulo order),

s, =0. The three non-hatched regions respectively correspond to (X", /) =(C{, 1), (C{,2) and
(CY, 1) from top to bottom.

Regime € = + 1. Using the notations in (3.9a), we have

c=2(X", 1) - ¥ 2(X 1),

X, e#,
I'/l=min{t, |a €2 (X))} (4.2)

Here, for s = (s,,..., s,), the symbol Z, stands for the set of subalgebras X, of X,
whose 2(X.) are obtained by removing the ath node from the 2(X,) for all the
a’s such that s, > 0. The formula (3.9a) corresponds to the choice s, =s5,,,.

Regime € = — 1. The central charges are easily obtainable from (4.1). However,
the presentation of the general result will require tedious notations to count the
overlapping of the hatched regions, which we find not necessarily essential. Here
we shall only provide the result for the case s,/¢t, € 7 for all 1 <a <r. Given such
s,/t,’s, define the strictly increasing sequence of integers 0 =k, <1<k, < ... <
k, <k, .,=1! for some 1 <m <r by saying that k(1 <i<m) is the ith smallest
non-zero integer in the set {s,/t,11 <a <r}. Setting k, ,=k,—k,, the central
charge is given by

c =_€’(X‘,", km) +... —h?(X‘,“, kmﬂ’m) —_S’(X(,‘), 1) +mr, (4.3)
which corresponds to the coset pair
XPVe e X" oXD (4.4)

level k,, - Kk l.

m+1,m

The formula (3.10a) corresponds to the choice s, =58,,, s/t, € Z. Remarkably,
for XV = AV, the above coset pair precisely realizes the conjecture proposed in
ref. [38] (see also ref. [34]) based on computer experiments on the one point
functions.

Finally, it should be interesting to study the scattering theories relevant to the
off-critical RSOS models. See e.g. refs. [39,40] for the recent development in the
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thermodynamic Bethe ansatz approach in this direction. We hope that the general-
ity considered in this paper will carry over to such theories.

This work was motivated by an illuminating lecture on the thermodynamic
Bethe ansatz by V.V. Bazhanov at the weekly statistical mechanics seminars
organized by R.J. Baxter. The author expresses his hearty thanks to V.V. Bazhanov
for valuable advice, generous help and a critical reading of the manuscript. The
author also thanks M.T. Batchelor for useful discussions, A.N. Kirillov for a kind
communication, K. Miki and T. Nakanishi for valuable comments. This work is
supported by the Australian Research Council through the award of a Queen
Elizabeth II Research Fellowship.

Note added

After completing the manuscript, the author was informed from A.N. Kirillov
[41] that he had noticed that eq. (7) of ref. [12] needs to be replaced by (A.1) of the
present paper for non-simply-laced algebras. In addition, the author learned that
Kirillov now has the proof of (A.1) for XV = C{" and D{V.

The Bethe equation (2.6) is associated with the quantum groups in the sense of
ref. [1]. Some interrelations between a modified Bethe equation and the quantum
group invariant spin chain hamiltonian have been noted in ref. [42].

Appendix A. Conjecture on the Rogers dilogarithmic function identity for the pair
(XM 1)

Let X¢" be an arbitrary non-twisted affine Lie algebra and fix an integer [ > 1.
Denote the Cartan matrix of the classical part X, by C*7, the dual Coxeter
number by g and define the integer ¢, =1, 2 or 3 (1 <a <r) as in (2.2). For each
pair (X{V, 1) we propose

Conjecture 1.

6 Z faHL oy Ldim X, Al
— y=———r, Jda
7T2a:l o (fm) l+g - r ( )
1 x{log(1-y) logy
L(x)=—= + dy. A.lb
(x) 2/()( , — |4 (A.1b)
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The entry 0 < f{” <1 in (A.1a) is the solution of the simultaneous equations

t -1 r

Z C}(”A:z”/q) log f;1(1a) = Z C[()Z(’) lOg(l _ft(,,bj)/zu)
m=1 b=1

1,/0,—1
+sz§') Z n lOg((l—ft(/,’(J}~l)/t“+n)(l _ft(,,l()}H)/r,,—n)) ;

(A.lc)

for 1 <a<r,1<j<t,/—1, where, by convention, f{* =0 if m & Z and L'»/}«"!
= 0 on the right-hand side when ¢, > ¢,.

As mentioned in sect. 1, (A.1) coincides with the original conjecture by Kirillov
[12] if XV = AP, D and EY), where one has V¢, = 1, hence (A.1c) reduces to
an especially simple form,

-1

Y Chen log fiP =3 CG log(1 - 7). (A.1d)
m=1 b=1

So far, the proof has been obtained for X{" = A in ref. [12]. (See note added.) In
addition, the case [ =1 can be verified easily for an arbitrary X! by reducing it to
A} for some r’ by means of (3.8) and (3.12). We remark that (A.Ic) has arisen
from the Bethe ansatz calculation in sects. 2 and 3 and in fact is equivalent to

ro o tpl—1

t -1
Y KM(0) log £ = X X Ji5(0) log(1 - £{"), (A.le")
m=1 b=1 k=1

where the functions K7/(x) and J%(x) are defined by (2.11) and (2.18), respec-
tively. Our main purpose here is to characterize the quantity f{* in terms of the
g-dimension of the X, modules at g = exp(27i/(l + g)). The description is partly
based on the finite-dimensional representation theory of yangians [20]. As for the
dilogarithmic functions, we refer to ref. [15].

A.l. QUANTITY £{” FOR THE PAIR (X", [)

Hereafter we shall write the Cartan matrix of X, simply as C and use the
notations (2.1) and (2.2) for the simple root a,, the fundamental weight w, and
the integer ¢,(1 <a <r).
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Consider the following recursion relation for the infinitely many variables
{OP1<a<r,m> —1)

2
Qf,?) = QEZLQ%L

—Cpp—1
b
+ b]:[l ]j[0 O\, m-iyc,y forl<a<r,m>0, (A.2a)
b+a,C,+0 !
0=1, 09=0 forl<axr, (A.2b)

where the symbol [x] stands for the greatest integer not exceeding x. A remark-
able solution to this equation is known in terms of the character of the finite-di-
mensional X, modules [20],

QW=73%Z(a, m, n)x(w, ,(n)), n=(ny,...,n)e7%, (A3a)

wa,m(") =Mw, — Z Npay, (A3b)
b=
r © [ b +
Z(a,m,n)=L TITI{" " (v) + vy ’ (A
v b=1k=1 v{®
PP(v) =min(m, k)8,,—2 ) min(k, j)v»
izl
* L 2 min(—kCp, —jCpe)v, (A.3d)
c=1j=1
c#*h

wherein (A.3¢), the symbol ( ) means the binomial coefficient and the sum extends
over all possible decompositions {v{”|n, =T _kvi®, vP €7 _,, 1<b<r, k>
1} such that #{"(v) > 0 for all 1 <b <r and k > 1. The quantity y(w) in (A.32)
denotes the character of the irreducible X, module V(w) with highest weight
and therefore the above Q' is a (Laurent) polynomial solution with r variables.
As argued in ref. [20], one may consider that there underlies the yangian Z(X,) D
X, and its finite-dimensional module W(a, m) that decomposes as

W(a, m)=®,Z(a, m, n)V(w, ,(n))=V(me,) ®..., (A4)

as a X, module, hence the Q' corresponds to its character. Here, the latter
equality means that the W(a, m) contains the irreducible X, module V(inw,) as a
“top term” with multiplicity one. The explicit form of Q(? is available in (A.9)-
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(A.14) for all the classical series X, =A,, B,, C, and D, as well as some results
and conjectures on exceptional Lie algebras.

Next introduce the integer / > 1 and specialize the character y(w) into the
g-dimension as
(afw+p)/2 —(a|w+p)/2

2mi
@iz 0 97T CXp I+g) (A.5)

q -4q

-4q

x(w) = al_l

ch, q(alﬂ)/?-

where A, denotes the set of positive roots of X, p = %ZaeA+a and g is the dual
Coxeter number. Then we have

Conjecture 2. Under the above specialization (A.5), the Q'® in (A.3) has the
properties

Q@ = Qﬁf,)‘m forO<m<t,l (A.6a)

a

t
Q4 < Q@ | f0r0<m<[7]—1, (A.6b)

forall l1<axr.

Supported by numerical tests, we hereafter assume this. From (A.2b) Q{” =1,
therefore conjecture 2 implies Q> 1 for all 1<a<r,0<m<t,l. Now the
solution f!* to the equation (A.1c) is given as follows:

Q1 Qi

@y -1 - =227 =77 7
fma =1 Q(a)z H
m

lga<sr, lsm<t,l-1, (A7)

where the Q'® means the one under the specialization (A.5). Admitting (A.6),
each term in the recursion relation (A.2a) is strictly positive for 1 <m <,/ -1,
hence we have 0 < f{* < 1 indeed for these m’s. Finally (A.1¢c) can be proved just
by combining (A.2) and (A.7).

Remark. One can show Q%) , =0 by using (A.2a) with m =¢,/ and Q{%) = Qf"
=1 from (A.6a). Thus the f{* in (A.7) naturally extends to the range 0 <m < t,/
as f§=f?=1. Noting that L(1)=m7/6, the conjecture (A.la) can also be
written as

{ dim X,

it (A.8)

6 * t,l
%L X L) -
T a=1m=1
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A.2. EXPLICIT FORM OF Q%

It is possible to write down the explicit form of the Q'® (m > 0) for the classical
series X, = A,, B,, C, and D, (cf. ref. [20]),

X,=A,;
0 =x(ma,), 1<asr, (A92)

X,=C,;

(A.9b)

m

@ { Yox(ko,+kyo,+ ... +k,w,), l<a<r—1,

x(mow,), a=r,
X,=B, and D,;

0% = Y x(ko®a, T Kyyr2@agirt ... Thoo,), T<a<r, (A9c)

, r for B,
r=\,_» for D, ag=amod?2, a;=0orl, (A.9d)
QW =x(mw,), a=r—1,r onlyforD,, (A.9¢)
where by convention w, = 0.
The sum in (A.9b) is taken over non-negative integers k, k,,..., k, that satisfy
kit+k,+...+k,<m, k;=mé;, mod 2 for all 1<j<a. The sum in (A.90)
extends over non-negative integers ka”, ka(,+2’ ..., k, obeying the constraint

tlky thky ot ... tk, ) +tk,=m.

For the exceptional algebras X, =Eg,, F, and G,, an explicit formula like
(A.9) is not known so far in general. Here we present some conjectures and the
results for a few simple cases. They serve as the “initial condition” that allows one
to uniquely determine all the Q! by the recursion relation (A.2a). Practically,
using the recursion relation is much simpler than the direct calculation of (A.3) in
order to obtain the Q' and the f!® numerically, hence to check the dilogarithm
identity (A.1a).

X,=E, (Conjecture except for small values of m);

05 =x(mw,), (A.10a)
09 =Y x(jw, + (m—j)ws), (A.10b)

j=0
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Qﬁ;j): Z(j4+ 1)(min(m —1—2i—J3—Js d3) 1)

X x(j @) +os) + (0, + 0,) 0, +j4w6), (A.10c)
m
0 =% x(jog), (A.10d)
i=0
where the sum in (A.10c) is taken over non-negative integers j,,..., j, under the

condition j, + 2j, +/j; +j, <m. The other Q'* are obtained from Q®~ by the
replacement w, < w,_, (1 <a <5), which is consistent with the order-2 symme-
try of the Dynkin diagram. The conjecture (A.10c) have been checked for 1 < m < 5.

X,=E; (Conjecture except for smail values of m);

m

0= 2 x(jw), (A.11a)
j=0

oY= ¥ x(jjo, +j0s), (A.11b)
i >0
h Tl sm

0y =x(ma,), (A.11c)
m

O = X x((m—j)ws+jw;). (A.11d)

j=0
In addition, the following forms are derivable from (A.3):
O =1+ 2x(w;) +x() +x(ws), (A.lle)
OF =2+ 4x(w)) +3x(w;) + x(20,) + x(w;)
+x(2w,) t4x(ws) + x(o, + 05) + 2x(w + @;), (A.11f)
O = x(ws) + 2x(@,) + 2x(w;) + x(w, + ;). (A.11g)

For Eg, we regard (A.2a) as an evolution equation with respect to the a-index.
Then the following information is sufficient as the initial condition:

X,=Ey (Conjecture except for small values of m);

QY= 2 x(joy), (A.12a)
j=0

QZ)= Z X(j1w1+j2w7). (A.12b)
Ji, J2>0

Jitiasm
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The consistency of these relations has been numerically checked for the levels
2 <[ <19. For F,, we have only derived the initial condition

X, =F,;

O =1+ x(w,), (A.13a)
0P =1+2x(w;) +x(w;) +x(2w,), (A.13b)
0 = x(w;) +x(w,), (A.13¢)
0" =x(wy), (A.13d)

Finally, for G, we have

X, =G, (Conjecture except for small values of m);

0% =2 x(jw)), (A.14a)
j=0

in addition to a few results on Q2

0 = x(w,), (A.14b)
0F = x(w;) + x(2w,), (A.l4c)
0P =1+2x(w;) +x(2w,) +x(3w,), (A.14d)

0P =x(w,) +x(2w,) + x(3w,) + x(4w,) + 2x(w, + w,). (A.l4e)

Throughout the formulas (A.9)-(A.14), Q% contains the term y(mw,) with the
coefficient 1 in agreement with (A.4).

References

[1] N.Yu. Reshetikhin and P.B. Wiegmann, Phys. Lett. B189 (1987) 125;
N.Yu. Reshetikhin, Lett. Math. Phys. 14 (1987) 235
[2] C.N. Yang and C.P. Yang, J. Math. Phys. 10 (1969) 1115
[3] A.A. Belavin, A M. Polyakov and A.B. Zamolodchikov, Nucl. Phys. B241 (1984) 333
[4) H.W.J. Bl6te, J.L. Cardy and M.P. Nightingale, Phys. Rev. Lett. 56 (1986) 742;
1. Affleck, Phys. Rev. Lett. 56 (1986) 746
[5] C.J. Hamer, J. Phys. A19 (1986) 3335;
F. Woynarovich and H.P. Eckle, J. Phys. A20 (1987) L97;
H.J. de Vega and M. Karowski, Nucl. Phys. B285 [FS19] (1987) 619;
C.J. Hamer, G.R.W. Quispel and M.T. Batchelor, J. Phys. A20 (1987) 5677,



A. Kuniba / Thermodynamics of Bethe ansatz 243

H.JI. de Vega, J. Phys. A21 (1988) L1089;
J. Suzuki, J. Phys. Soc. Jpn. 57 (1988) 2966; J. Phys. A21 (1988) L1175;
M.T. Batchelor and H.W.J. Blote, Phys. Rev. B39 (1989) 2391;
H.P. Eckle and C.J. Hamer, J. Phys. A24 (1991) 191;
A. Klimper, M.T. Batchelor and P.A. Pearce, J. Phys. A24 (1991) 3111;
A. Kliimper and P.A. Pearce, Physica A183 (1992) 304;
[6] V.V. Bazhanov and Yu.N. Reshetikhin, Int. J. Mod. Phys. A4 (1989) 115
[7] V.V. Bazhanov and Yu.N. Reshetikhin, J. Phys. A23 (1990) 1477
[8] M. Jimbo, A. Kuniba, T. Miwa and M. Okado, Commun. Math. Phys. 119 (1988) 543
[9] M. Jimbo, T. Miwa and M. Okado, Commun. Math. Phys. 116 (1988) 507
[10] A. Kuniba and J. Suzuki, Phys. Lett. A160 (1991) 216
[11] A. Kuniba, Nucl. Phys. B355 (1991) 801
[12] A.N. Kirillov, Zap. Nauch. Semin. LOMI 164 (1987) 121 [J. Sov. Math. 47 (1989) 2450]
[13] V.G. Knizhnik and A.B. Zamolodchikov, Nucl. Phys. B247 (1984) 83;
E. Witten, Commun. Math. Phys. 92 (1984) 455
[14] A.N. Kirillov and N.Yu. Reshetikhin, J. Phys. A20 (1987) 1587
[15] L. Lewin, Dilogarithms and associated functions (Macdonald, London, 1958)
[16] E. Date, M. Jimbo, A. Kuniba, T. Miwa and M. Okado, Nucl. Phys. B290 [FS20] (1987) 231; Adv.
Stud. Pure Math. 16 (1988) 17
[17] M. Jimbo, T. Miwa and M. Okado, Nucl. Phys. B300 [FS22] (1988) 74
[18] E. Date, M. Jimbo, A. Kuniba, T. Miwa and M. Okado, Lett. Math. Phys. 17 (1989) 69
[19] M. Jimbo, K.C. Misra, T. Miwa and M. Okado, Commun. Math. Phys. 136 (1991) 543
[20] A.N. Kirillov and N.Yu. Reshetikhin, Zap. Nauch. Semin. LOMI 160 (1987) 211 {J. Sov. Math. 52
(1990) 3156]
[21] V.G. Kac, Infinite-dimensional Lie algebras (Cambridge Univ. Press, Cambridge, 1990)
[22] M. Jimbo, Lett. Math. Phys. 10 (1985) 63;
V.G. Drinfel’d, ICM Proceedings, Berkeley (1987) 798
[23] L.A. Takhtadzhyan and L.D. Faddeev, J. Sov. Math. 24 (1984) 241
[24] V.V. Bazhanov, Phys. Lett. B159 (1985) 321;
M. Jimbo, Commun. Math. Phys. 102 (1986) 537
[25] A. Kuniba, J. Phys. A: Math. Gen. 23 (1990) 134
[26] M. Okado, Commun. Math. Phys. 134 (1990) 467
[27] P.P. Kulish, N.Yu. Reshetikhin and E.K. Sklyanin, Lett. Math. Phys. 5 (1981) 393
[28] V. Pasquier, Commun. Math. Phys. 118 (1988) 355
[29] K. Aomoto, Y. Kato and K. Mimachi, A solution of Yang—Baxter equation as connection
coefficients of a holonomic g-difference system, Nagoya University preprint (1991);
I.B. Frenkel and N.Yu. Reshetikhin, Quantum affine algebras and holonomic difference equations,
preprint (1991)
[30] H.M. Babujan, Nucl. Phys. B215 [FS7] (1983) 317
[31] A.M. Tsvelick and P.B. Wiegmann, Adv. Phys. 32 (1983) 453
[32] P. Goddard, A. Kent and D. Olive, Phys. Lett. B152 (1985) 88
[33] G.E. Andrews, R.J. Baxter and P.J. Forrester, J. Stat. Phys. 35 (1984) 193
[34] A. Kuniba and T. Nakanishi, in Modern quantum field theory, ed. S. Das, A. Dhar, S. Mukhi, A.
Raina and A. Sen (World Scientific, Singapore, 1991)
[35] F.M. Goodman and T. Nakanishi, Phys. Lett. B262 (1991) 259
[36] A.B. Zamolodchikov, Int. J. Mod. Phys. A4 (1989) 4235
[37] H. Riggs, Nucl. Phys. B326 (1989) 673;
T. Nakanishi, Nucl. Phys. B334 (1990) 745;
A. Kuniba, T. Nakanishi and J. Suzuki, Nucl. Phys. B356 (1991) 750;
A. Kuniba and T. Nakanishi, Fusion RSOS models and rational coset models, Nagoya Univ.
preprint NU-MATH 005 (1990)
[38] E. Date, M. Jimbo, A. Kuniba, T. Miwa and M. Okado, talk at Taniguchi Conf. on Integrable
systems in quantum field theory and statistical mechanics, Katata, 1988, unpublished



244 A. Kuniba / Thermodynamics of Bethe ansatz

{39] V.V. Bazhanov and N.Yu. Reshetikhin, Prog. Theor. Phys. Suppl. 102 (1990) 301
[40] T.R. Klassen and E. Melzer, Nucl. Phys. B338 (1990) 485; B350 (1991) 635;
M.J. Martins, Phys. Lett. B240 (1990) 404;
Al.B. Zamolodchikov, Nucl. Phys. B342 (1990) 695; B358 (1991) 497
[41] A.N. Kirillov, private communication
[42] V. Pasquier and H. Saleur, Nucl. Phys. 330 (1990) 523



