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e Link polynomials: Invariants of knots and links
« Random knots: a model of knotted ring polymers

« We can study
Topological entanglement effects among polymers
and DNA topology
through simulation using knot invariants.



Knots and Links

e A knot is a closed curve In three
dimensions with no self-intersection.

ex. A circle gives a trivial knot.
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Fig. 2. A knol. Fig, 3. A link.

 Alink Is a set of closed curves in three
dimensions. => Links generalize knots.



Link diagrams

* \WWe express links by projections on a plane
where upper curves and lower curves are
distinguished at all crossing points.

* We call such projections link diagrams.



Nontrivial knots (closed 3-braids)
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Reidemeister moves on a link diagram does
not change the topology.
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Fig. 17. Reidemeister moves I, IT and I1L.




Topological invariants of knots and links

 Two link diagrams express the same link if and only if
there exists a finite sequence of Reidemeister moves

which connects one to the other.

 Alink invariant is such a quantity defined on link
diagrams that is invariant under Reidemeister moves.



Skein diagrams

Suppose that D-, D+, and Do are link diagrams
which are the same except at one crossing point.

We call them skein diagrams.

(@) minus - ; (b) plus+; (c)zero O
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The Alexander-Conway polynomial

We assume that the Alexander-Conway
polynomial for the trivial knot is equal to 1.

We calculate it through the following recursive
relation with respect to the number of crossing
points:

J.W. Alexander (1928); J. Conway (1970)



The Jones polynomial

We assume that the Jones polynomial for the trivial knot
IS equal to 1.

We calculate it through the following recursive relation
with respect to the number of crossing points:
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V.F.R. Jones (1985); cf. the Temperley-Lieb-Jones algebra



The HOMFLY polynomial

We assume that the HOMFLY polynomial for the trivial
knot is equal to 1.

We calculate it through the following recursive relation
with respect to the number of crossing points:
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P.Freyd, D. Yetter, J. Hoste, W.B.R. Lickorish, K.C. Millett, and A. Ocneanu
(1985); J.H. Przytycki and P. Traczyk (1987)



The Kauffman polynomial

We assume that the Kauffman polynomial for the trivial
knot is equal to 1.

We calculate it through the 39 order recursive relation
with respect to the number of crossing points:

LD+<CL’ 2)+Lp (a,z) ==z (LDO(CL, z) + Lp, (a, Z))

L.H. Kauffman (1987) N
creation-annihilation diagram 77N\



The HOMFLY-PT polynomial
(the skein polynomial)

e The HOMFLY-PT polynomial of a link gives a
two-variable polynomial and generalizes both
the Alexander polynomial and the Jones
polynomial.

 However, there exists another generalization to
the Jones polynomial.



Link polynomials generalizing the Jones
polynomial are derived from the solvable N-state
vertex models (fusion hierarchy)
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A universal property of solitons:
Factorized Scattering among solitons

=> the Yang-Baxter equation
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Fig. 1. Schematic explanation of the factorization equation. Time direction is upward.



Braids and the braid group

 An example of a braid

A

Fig. 1. An example of n braids,

 The braid operation

1 - =1 0 1 2 eeon
1o =1 +1 1+2 -+ on

Fig. 2. Generator b,



The braid group relation corresponds to
the Yang-Baxter equation

| 41 47 | Qe |+ 2
- - /
PiPj 1Py b; 41PiP4 4

Fig. 3. Two topologically equivalent braids.



Higher order skein relations

N=3
a(Ly+)=t(1—t*+)a (L)
+ 5=t + (L) — t8a (L),

(5.23)
N=4

a(L:)="*(1-+—1Ya(Lys)
+15(1 =2+ +—14+ ¥a (L)
+ =1+t =+ (L)
— % (L), (5.24)



The N=3 link polynomial distinguishes a pair of
links which have the same Jones polynomial

34 Yasubiro Asvrsy, Tetsuo Decuck and Miki WanaT {¥ol. 56,

A B e(d)=wuiB)
=" — T+ 2= - ae

| _j— 1 L = e e o Tt i TR oY TR TR oY TRt T
o)

4 =32 =+ 1) (5.3)

| On the other hand, o{d) and «(#) are
different in the N=73 case. We have
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+4F -] =2 et — A -2
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We may evaluate @A) as follows, Using for-
mula (1.70) and the gemeralized Alexander-
Conway relation {215}, we have
alA)=a(db B =a (b &b b "b b
=-ﬂl:l{fl|bi.b|b:-qb|ﬁ':-q:l

| L + Beel by by by By ¥, )
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Fig. 4. Closed braids, A=(b bbb "8 and B= +ea(Bibs b b, (5.5
L8 Emch term in (5.5 may be caloulated as




Various approaches to the fusion hierarchy

e The fusion hierarchy of link polynomials introduced by
Akutsu and Wadati (1987) are reconstructed as guantum
Invariants of higher spin representations of the quantum
group Uq(sl(2)). (Kirillov-Reshetikhin, 1989)

 Related works: invariants of parallel links (J. Murakami,
1989); invariants of spatial graphs (S. Yamada, 1989)

 The Chern-Simons quantum field theory with su(2).
(Witten 1989)

 They are also called the colored Jones polynomials in
knot theory (Cf. Melvin-Morton (1995) The colored
Jones function’).



Several Advantages of the fusion hierachy

e The link polynomials in the hierarchy can be
systematically and explicitly calculated.

(Many useful tools such as g-analogues of 3j and 6
symbols)

e Atroots of unity, it leads to invariants of three-
dimensional manifolds.

(Turaev-Reshetikhin, Turaev-Viro, Kohno)

* Itis one of the most useful families of link polynomials for
studying knots and links. (Cf. Melvin-Morton (1995))



Physical applications of knot invariants:
Topological entanglement effects

Consider polymers in solution or polymer networks
consisting of polymer chains.

Ring polymers and polymer networks have fixed
topology under thermal fluctuations.

Topological constraints may lead to nontrivial statistical
and dynamical properties of polymers, such as
topological entropic repulsion.

We study such topological effects through computer
simulations using invariants of knots and links.

(random knots or random links)



Double stranded circular DNA

(A.D. Bates and A. Maxwell, DNA Topology, Oxford Univ. Press, 1993)
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An electron micrograph of Trefoil knot DNA

M.A. Krasnow, A. Stasiak, S.J.



Motivations for studying random knots and links:
knotted DNASs

Many DNA knots are derived from circular DNAs.
(Circular DNAs are the key to understand replication
pProcess. )

It is nontrivial how to keep the topology of a double
stranded DNA chain during replication process.
(enzymes, ‘topoisomerases’)

To understand DNA topology, we study statistical
mechanics and dynamics of (thin) knotted ring polymers.

Topological effects are nontrivial. A topological
constraint leads to entropic repulsions among polymer
segments.

(cf. topological swelling of random knots)



Approaches to topological entanglement
effects

o Statistical study:

Construct random configurations of ring polymers with
fixed topology  (cf. Monte Carlo methods)

knotting probability (entropy of a random knot)

linking probability (entropic repulsion among ring polymers,

=> anomalous osmotic pressure)

the mean square radius of gyration (average size of ring polymers)

two-point correlation functions

scattering functions (static structure factors)

e Dynamical study:

Dynamical simulation of a ring polymer with fixed
topology (cf. Molecular Dynamics)



An example of simulation scheme for statistical
study of random knots

Construct 1000,000 polygons of N vertices for N=100,
300 and 800

Calculate knot invariants:
the determinant of knots; the 2nd order Vassiliev invariant.

We pick up such polygons that have the same set of
values of the two knot invariants.

We evaluate the statistical expectation of some physical
guantity taking the average over selected polygons.



Knotting Probability:

Probability of a random polygon being a given knot
T.D. and K. Tsurusaki, PRE 55 (1997)

Gaussian random polygon
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Fitting function of the knotting probabillity

* Let P(K,N) denotes the probability of random
polygon with N-vertices having knot type K

« P(K,N) =C(K) N MK exp(- N/N,)
» Scaling concepts of polymers explain the N -

dependence of knotting probability.
(Criticality at infinite N)



Knotting probability can be compared with
DNA experiment (Cf. A. Vologodskii, to appear)

—— OC Jdimer
? : ' Figure 5. Electrophoretic separation of
|- knotted (right lane) and linked (left lane)
o o Linens dimes DNA molecules 4363 bp length. Each band
L2 - corresponds to a knot or link with a specific
14 —| - number of intersections in the standard
15 | - form. These numbers are shown next to eac
S b band. All links belong to the torus family.
2 OC dimer 1s open circular DNA molecule o
‘ double length. (Illustration provided by E.
R Banemas M. Shekhtman and D. E. Adams.)
linear
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The average size

The mean square radius of gyration of a ring
polymer with fixed knot K.

(R21) =~ 5 5 (Rj—Rp)?)
PRI ON2 2=

We take the average over all configurations of the ring
polymer with fixed knot type.



Topological swelling of thin ring polymers
for cylindrical segments with r = 0.003)

Average size versus N.
Miyuki.K. Shimamura et al., Phys. Rev. E Vol. 65, 051802 (2002)
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Topological swelling occurs for SAP consisting of cylinders

with small radius (the ratios of the average sizes)
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Two vertices with Arc length n/N
and Distance r
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Two-point correlation function:

Probability distribution of distance r between

two fixed vertices

 We denote by the symbol the probability

distri

pution of distance r between two vertices

with
knot

narameter n/N of random polygon with fixed
K

 We call it Distance distribution, briefly.

Cf. AY

ao et al, J. Phys. A 37, (2004) 7993-8006.



Scattering function g.(q)
(static structure factor)

e Scattering function is given by the Fourier
transform of the correlation function.

g(q) = [dre'?7g(r)

1/2 Sin qr

g (q) = 2N [° [/ fre(ri X, N)dA=———dr

qr

« Here g denotes to the wave number.



Scattering function P,(q) of a knotted ring polymer
(M.K. Shimamura et al., Phys. Rev. E 72, 041804 (2005))

The Kratky plots: g% P«(q) versus q (N=200)
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Exact model function of distance
distribution (A. Yao and T.D, in prep.)

Q.2
fr(ri A N) = Cxr¥0kexp| ="
2No <
o (z; N) = Vz exp(ak z)
@K(Z,N) = bKZﬁK
n
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s = ML) .

« Here z Is given by z=(1-n/N) n/N



Distance distribution (n/N=1/2,
NZSOO) (A. Yao and T.D, in prep.)

A=1/2, N=800
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Analytic expression of g.(q)
A. Yao and T.D. in prep. (T.D and A. Yao, to appear)

1/2 2
gre(q) = 2N [ —
TR o ar((3+ 0k (N)/2)

dA

J/(?O Y 140k (N) exp(—y?) sin(ay) dy

where a IS given by
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Conclusions:
Part I.

(1) We reviewed some fundamental link polynomials, in particular, the
fusion hierachy of link polynomials.

(2) They were first derived by Akutsu and Wadati as a consequence of
the factorized scattering of solitons.

(3) They correspond to quantum invariants of higher spin reps of
Uq(sl(2)).

Part Il.

(1) Topological entanglement effects are systematically studied through
simulations using invariants of knots and links.

(2) We can evaluate knotting probability, linking probability, topological
swelling, scattering functions, etc., explicitly.

(3) They are useful in studying DNA topology. Furthermore, they are to
be tested in experiments of ring polymers in solution, near future.



Thank you very much.

Finally, | would like to thank Prof. Miki
Wadati for his fruitful research results and
continuous encouragement to many
students.
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