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e Ground state correlations forL=4,A=1. U|gs = |g9, S*|g9 =0, a =Xx,y,Z
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For translationally invariant systems structure reveals itself in the two-point functions



e One is often interested in L — o, thermodynamic limit

e Above method can be carried out by hand up to L = 10 lattice sites (210 ~ 10°, ¥ = 0 (150) = 252
(Hulthén 1938)

e Using a computer we gain a further factor of 3 or 4 in the system size (230 = (210)3 ~ 109).




e One is often interested in L — o, thermodynamic limit

e Above method can be carried out by hand up to L = 10 lattice sites (210 ~ 10°, ¥ = 0 (150) = 252
(Hulthén 1938)

e Using a computer we gain a further factor of 3 or 4 in the system size (230 = (210)3 ~ 109).

e Analytical solution: (SS}, ;) = 2(0%0%, ;) from multiple integral formula and functional equations

L=4 L=6 L — oo
n=1| -1 _4(¢1i3—2) L -12~-0148
n=21| 4 Vi L a4z %0 0061
n—3 o _4(65f§\/1_3) %2 _3In2+ 37z6(3) B 14Z(§)In2 B 3z22(3) B 1zgz4(5) n 25z(g)|n2 ~ _0.050
n=4 — — ~ 0.034652776982
n=>5 — — ~ —0.030890366647
nN==56 — — ~ 0.024446738328
n=7 — — ~ —0.022498222763

N = 1 Hulthén 1938, n = 2 Takahashi 1977, n=3,...,7 ISSP group 2003-05




L (0703) (070%)

2 —1.00000000000000 —

4 —0.66666666666667 .B83333333333333
6 —0.62283903060711 0.2/735009811261
8 —0.60851556815620 0.26103720534839

16  —0.59519136338473 0.24696584167998
32 —0.59193864328956 0.24374937989865
64 —0.59113127886152 0.2429/329183505
128  —0.59M02994011745 0.2427/8223127753
256  —0.5908/965782193 0.24273481483257
512 —0.59086/093857/81 0.24272300601642
1024  —0.5908695383499 0.24272006021644
o  —0.59086290741326 .Q427190/982574

Zzcorrelators as functions of the system size




e Finite size data from integral formula (with J. Damerau, N. P. Hasenclever, A. Klimper)
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e All properties of the XXZ chain can be
derived from the well-known trigonometric

solution
1 0 0 0
10 bA) cn) o0
RV = 0 c(A\) bQA) 0
0 0 0

of the Yang-Baxter equation, where

B0V = grn i+ N = siox e

~ shA+n)
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of the Yang-Baxter equation, where
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e This R-matrix generates the XXZ
Hamiltonian

L
Hxxz = 2Jsh(n) z (PR)j-1,j(A )\ 0

P transposition in C? @ C?, A = ch(n).
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e All properties of the XXZ chain can be
derived from the well-known trigonometric

solution
1 0 0 0
10 bA) cn) o0
RN = 0 c(A\) bQA) 0
0 0 0

of the Yang-Baxter equation, where

sh(A) shin)
&) sh(A+n) A sh(A+n)
e This R-matrix generates the XXZ
Hamiltonian

L
Hxxz = 2Jsh(n) z (PR)j-1,j(A

P transposition in C?® C?, A = ch(n).

7\0

e Setting © = diag€®, e”'®), ® € [0, 211, we fix
twisted boundary conditions requiring that

@i €7\ _gfa1 @3z)g1
ef €05 af as
e L-matrix
of o
ng()\) — Rgg()\)ely

Monodromy matrix

T\ = (A()‘) BQ)) —OLL(A)...L1(N)

Yang-Baxter algebra

RA-—W(TA)TW) = (TWTA))RA—H

where R = PR Twisted transfer matrix t(\) =
trT(A).




e Algebraic Bethe ansatz for eigenstates of t(A)
A} =B(Mm—13)...B(Aw—3)[0)

((1))®L is the ferromagnetic reference state, and
_ x.IN

the set of Bethe roots {A} = {Aj}j_; must be

determined from the Bethe ansatz equations

e #Psht(Aj —3) N shiAj —Ax+n)

v sht(Aj+3) le shiAj —Ak—n)

=0

j=1,....N
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e Ground state of the XXZ Hamiltonian is the

transfer matrix eigenstate with {A] }Ij‘i 21 the

unique real solution of the Bethe ansatz
equations for N = L /2. It determines a
meromorphic auxiliary function

e dPsit(A— 1) /2 SHN — A +1)
W= s
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e In terms of this function the ground state
eigenvalue Ag(A) becomes
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((1))®L is the ferromagnetic reference state, and
_ x.IN

the set of Bethe roots {A} = {Aj}j_; must be

determined from the Bethe ansatz equations
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transfer matrix eigenstate with {A] }Ij‘i 2:1 the

unique real solution of the Bethe ansatz
equations for N = L /2. It determines a
meromorphic auxiliary function

e dPsit(A— 1) /2 SHN — A +1)
W= s

e Algebraic Bethe ansatz for eigenstates of t(A)

In terms of this function the ground state
eigenvalue Ag(A) becomes

2 shn— A — )

No(N) = (1+a(r+12))€® Dl S n ]

Bethe ansatz equations imply that Ag(A) is
regular at the points Aj — 3, j =1,...,L/2
Extensive numerical studies support the con-
jecture that Ag(A) is non-zero inside a strip
—In| < ImA <0. Then 14 a(A) is analytic in-

side the strip —|i2| < ImA < @ and its only
zeros in this strip are the Bethe roots. This to-
gether with the obvious analytic and asymptotic
properties of a(A) is enough to set up a set of
functional equations for the second logarithmic
derivatives of a(A) and 1+ a(A) which together
with their known asymptotics determine a(A)
uniquely.




e Non-linear integral equation

Ina(A) = —2id + L”“"”(z::((;—jé;) ~ /. %*T)Kn()\—m)ln(lnt a(w))
r'lm

Re

The canonical contour (for the critical
regime) C surrounds the real axis in
counterclockwise manner inside the

strip —|12| <ImA < m7|




e Non-linear integral equation

Ina()\):—ZiCD+Lr]+LIn( ::(( %;) — (;C;T)Kn()\ w) IN(1+ a(w))
+2
e The kernel Ky (M) is defined as im
Ko (\) = shen) e L

ish(A —n)sh(A+n)

Re

The ground state eigenvalue /A\g(A) can be expressed as an
integral over a(A),

INAo(A) =i+ M / Kn (A — ) In(1+ a(w)) The_: canonical contour (for the cri.ticgl
2 regime) C surrounds the real axis in

_ _ counterclockwise manner inside the
This determines the ground state energy and the eigenvalues - In| Ll
. N _ strip — 5 <ImA < =
of the higher conserved quantities as a function of L.




e The density matrix is a means to describe a
sub-system as part of a larger system in
thermodynamic equilibrium in terms of the
degrees of freedom of the sub-system.

H
e T

PL H
tre T

statistical operator for chain at temperature T.
Then the density matrix of the sub-system
consisting of the first m lattice sites is

DL(T) =trmy1.LPL




e The density matrix is a means to describe a
sub-system as part of a larger system in
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H
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e Thermal average of an operator A acting
non-trivially only on sites 1 to m

tri. LAPL =tre. mAL. mtrms+1..LPL

=tr1. mAL.mDL (T)

where A1 _m is the restriction of Ato sites 1 to m



e If we follow the common convention and use
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thermodynamic equilibrium in terms of the
degrees of freedom of the sub-system.

and for their restriction to the first m sites, we
find the expression
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e The density matrix is a means to describe a
sub-system as part of a larger system in
thermodynamic equilibrium in terms of the
degrees of freedom of the sub-system.

H
e T

PL = H
tre T

statistical operator for chain at temperature T.

Then the density matrix of the sub-system
consisting of the first m lattice sites is

DL(T) =trmy1.LPL

e Thermal average of an operator A acting
non-trivially only on sites 1 to m

tri. LAPL =1tr1. mAL mtrm+1. L PL
=1tr1. mAL mDL(T)

where A1 m is the restriction of Ato sites 1 to m

If we follow the common convention and use
the same symbols for the local operators ejg

and for their restriction to the first m sites, we
find the expression

Dig! g™ (T) =tre merg! ... €mg™DL(T)

= (e1pr .- Emg")T

for the matrix elements of the density matrix.

Here we are interested in the unique
(normalized) ground state |Wo) of the system
of finite even length. In the limit T — O+ the
statistical operator p. converges to the
projector |Wp) (Wo| onto the ground state, and
the formula for the density matrix elements
turns into

al...am o H 01...Gm
DLBl---Bm o TII_%]JF DLBl---Bm (T)

= (Wolerg! .. emg"|Wo)



e \We use a trick suggested in [KMT99] in order to express this entirely in terms of data related to the
monodromy matrix T (A)

ejf =t H(0)T§(0)t)(0)

It follows that

Dig! g = (Wo[Tg (0) ... T (0)t~™(0)|Wo)

B1--Bm B




e \We use a trick suggested in [KMT99] in order to express this entirely in terms of data related to the
monodromy matrix T (A)

ejf =t H(0)T§(0)t)(0)

It follows that

DLl g™ = (Wo[T32(0)... TE™(0)t™(0)|Wo)

e In order to apply the techniques developed in [GKS04] for the finite-temperature case we regularize
the expression by introducing inhomogeneity parameters &j, j = 1,...,m, in the following way. Define
an ‘inhomogeneous density matrix’

TS (L= D). TEM(Em— DAY

DLt g (&1, &m) = (AL My Ao(E - T)

where [{A}) is the (unnormalized) Bethe ansatz ground state. Then

D a1...0m Ilm DLgigr:]n(El, . ,Em)

Ela"'azm_)%

LB1.Bm —




e The inhomogeneous density matrix element for the ground state of the chain of finite length

O1...0m o dw m i
D [31 Bm (E Em) [ / 2711 1_|_ a (JOJ El1 Sr(wl Ek - )kzl)(_j|+1sr(wj - Ek)_
N O T &) [] s -&)

SN W; + shwj —
- |0(+|+1 e 2m(l1+a(wj)) Dl j — Sk TN k:Iy_j|+1 j k _

det(_G(wJ ) Ek))
Mi<j<k<mSh(&k —&j) sSh(wj —ux —n)

where a = 1/a and where the function G(w, &) has to be calculated from the linear integral equation

sh(n) dwG(w,§)

G(\, &) = Kn(A — w)

ShA—&)shA—E-1) ' Je 2m(1+ a(w))




e The inhomogeneous density matrix element for the ground state of the chain of finite length

la™ |

D g:ll. gnT( [ﬂ / 71 1+a (@) Ul sh(wj —&—n )k—l_-|+15h(wj —&k)
k= =Xj |
[ O T &) [] s &)
SNW;j + SNwj —
IO(+|+1 e 2ri(1+a(w;)) Dl ok kzly_,-|+1 b

det(_G(wJ ) Ek))
Mi<j<k<mSh(&k —&j) sSh(wj —ux —n)

where a = 1/a and where the function G(w, &) has to be calculated from the linear integral equation

sh(n) N dwG(w,§)
shA—&)shA—-&—n) Je 2m(1+ a(w))

G(\, &) = Kn(A — w)

e For the chain at finite T with external magnetic field h replace the auxiliary function with the solution of

nagy =1 B [ 00w+ )




Numerical evaluation of multiple integrals for m= 3, temperature case

P(3)

T T T 1T T T —F—"" | IR e
01— -
- ! n=0 ]
005 ! n=0, QMC (Tsuboi et al.) a
! ' -~ =0 Pade[21,21] (Tsuboi et al.)
I e (e r]:]_ |
T I_._._/,j__l ,,,,, - | | | | , | !
0_5 0 5




Multiple integrals for T,h = 0: M. Jimbo et al. 92, M. Jimbo and T. Miwa 96, N. Kitanine et al. 00
Were considered rather useless for practical calculations, since the numerical costs grow exponentially
with the number of integrations for multiple integral

Surprise came in 01, when H. E. Boos and V. E. Korepin managed to calculate the multiple integrals
for P(3) and P(4) analytically.
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Were considered rather useless for practical calculations, since the numerical costs grow exponentially
with the number of integrations for multiple integral

Surprise came in 01, when H. E. Boos and V. E. Korepin managed to calculate the multiple integrals
for P(3) and P(4) analytically.

What is behind?
Theorem (H. E. Boos et al. 05). The inhomogeneous correlation functions of the isotropic Heisenberg
chain at T,h = 0 depend on a single transcendental function

Wo(&1,&2) = 2i0xIn

X=€1—&>

which is proportional to the two-spinon scattering phase (for XXZ two functions, for XYZ three).
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e What is behind?
Theorem (H. E. Boos et al. 05). The inhomogeneous correlation functions of the isotropic Heisenberg
chain at T,h = 0 depend on a single transcendental function

Wo(&1,&2) = 2i0xIn
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e Why do (-functions appear?

[ee]

(-1t -2z itz#1
~ 1In2 ifz=1

W& E) =43 (DB -E)* @t D). @)= 3 o
k=1

k=0




Consider the inhomogeneous emptiness formation probability for the XXX chain

B do do, | (01 — &1 —i)(wp —&2)
D11(81,&2) (81— &2) = /C 21+ a(oy)) /C 21+ a(e) det(G(0j, &k)) T wiwmi
(@)

duwyp

7 det(G(e), &) (1 (eor,we) —1 (w2, 1))

1 dwy
T2 /c 21(1+ a(wy)) /c 21(1 + a(wy)
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Consider the inhomogeneous emptiness formation probability for the XXX chain

B do do, | (01 — &1 —i)(wp —&2)
D11(81,&2) (81— &2) = /C 21+ a(oy)) /C 21+ a(e) det(G(0j, &k)) T wiwmi
(@)

1 doy duy
T2 /c 21(1+ a(wy)) /c 21(1 + a(wy)

7 det(G(e), &) (1 (eor,we) —1 (w2, 1))

Here

(UJl—El—i)(wz_—Ez) N (w2 — &1 —1i) (e —&2) P(or,up)

W — W — | W1 — Wy +i 1+ (w1 — )2

r(on, ) —r(up,wm) =

The polynomial P(wy, ) can be decomposed in such a way that

p(wn) — p(we)
1+ (wn — uy)?

P, 0p) 2
1_|_(001_002)2 :_é(wl_(*)Z)+

where
p(w) = §w3— Er+&+D)w* + [((E1+E&+ 5) + 28182 ]w




Then

1

D17(81,82) (81— &2) = .

> signP) [

Pea?

dooy G(oon, Ep1) / doy G0, Ep2) [_2 " p(o0n) ]
C

¢ Mita(w) Je Mitalen) | 3 % 1+ (on—wp)?




Then

1

D17(81,82) (81— &2) = .

> signP) [

do G(wr,&p1) [ dup G(wyp,&p2) [ 2 p(w1)
2, ¢ T(1+ a(wn)) A [‘ . ]

Mita(w) | 30 1+ (@ — )2

This can be reduced by means of the integral equation for G(w, §),

duy G(wy,&p2) 1 B 1
A 2 = Gl 8e2) + o S (o =& = 1)

M1+ a(ay)) 1+ (0w —op)




Then

1

D17(81,82) (81— &2) = .

dooy G(oon, Ep1) / doy G0, Ep2) [_2 - p(o0n) ]
C

3,5 mMl+a(we) [ 3

_|_
A c T(1+ a(w)) 37T 1+ (b —ap)?

This can be reduced by means of the integral equation for G(w, §),

day G(wy, Ep2) 1 B 1
/C M1+ a(wp)) 1+ (0 —wp)2 Gloon,&p2) + (w1 —&p2) (0 —Ep2 —1)

Finally (H. E. Boos, FG, A. Klimper, J. Suzuki 06)

D11(81,82) (81— &2) = > sign(P) [%2(3EP1 —&p2+1)@1(Ep1)

Pes?2

- %(PZ(EPZ) - %(Pl(ﬁpl)(PZ(EPZ) - 2—14(EP1 —&p2)(1+ (Ep1— &p2)?)W(Ep1.Ep2)
where
B dw G(w,&1) o [ dow T1G(w,E)
W(&1,82) = /c M1+ a(®) (@—E)(0—Es—1) 0 (€) _/c (14 a(w))




The functions Y generalizes the ‘two-spinon scattering phase’ to finite temperature and magnetic field

lim lim W(&1,&2) = Po(&1,82)

T—0h—0

Instead of Y(&1,&2) we shall rather use the closely related expression

Y(€1,&2) = [1+ (81— &2)*|W(&1,&2) — 1

in terms of which our final formulae look neater. We also define limp_oVY(§1,62) =: Yo(&1,&2).




The functions Y generalizes the ‘two-spinon scattering phase’ to finite temperature and magnetic field

lim lim W(&1,&2) = Po(&1,82)

T—0h—0

Instead of Y(&1,&2) we shall rather use the closely related expression

Y(€1,&2) = [1+ (81— &2)*|W(&1,&2) — 1

in terms of which our final formulae look neater. We also define limp_oVY(§1,62) =: Yo(&1,&2).
In the same limit the moments @; (&) become polynomials of order j —1in ¢,

(0) _q 2k

lim lim ; (8) = ¢, (8) = (=100 Tk |, g

Using these polynomials we define the ‘normalized moments’ ¢ (&) = @;(§) — (pgo) (&) which vanish for
T.h — 0. We further introduce the symmetric combinations

B det(d;(Ex))] i k=1,...n

[M1<j<k<n €]

An(EL ce - 7En)

with the shorthand notation &xj = &k —&;.
 Density matrix and correlation functions of the Xxzchain ~~ TodailHongo, 6/2/2007 [reduction 4 - 18/21]



Emptiness formation probability for m= 3.

1+5&12&13 1+ 2813623 1

DH(E1,82.80) = 55 + et 2 Ba(E) + g o 2 B8, Ba) + goaEn.Ea.fa)
— 2
+ —124;1133;2233 Y(&1,62) — Al 25;&;223223 Y(&1,&2)A1(&3) + cyclic permutations.




Emptiness formation probability for m= 3.

1—|— 5E12E13 1+ 2&13&23 1

1
Diil
DItH(E1.€2.89) = 53 + ypees Ba(E) + e Bo(Er.Eo) + golalErEaEo)
1—&13823 3+ 282, + 5813823 . .
+ s V(€1,€2) 12C 1560 V(&1,&2)A1(&3) + cyclic permutations.

In the limit of vanishing magnetic field A; — 0, and our result reduces to

1 1
D111(€1,€2,83) = 2&51%23

vo(&1,€2) + cyclic permutations.

Note that the only effect of taking the limit T — O here is that the function yp(&1,&2) changes into its zero
temperature form.




Emptiness formation probability for m= 3.

D111 1 1+ 5512513 1+2513523 1
DItH(E1.€2.89) = 53 + ypees Ba(E) + e Bo(Er.Eo) + golalErEaEo)
1—&13823 3+ 282, + 5813823 . .
+ s V(€1,€2) 12C 1560 V(&1,&2)A1(&3) + cyclic permutations.

In the limit of vanishing magnetic field A; — 0, and our result reduces to

1 1 §13623
245 3§23

D111(81,82,83) = 22222 v0(&1,&2) + cyclic permutations.

Note that the only effect of taking the limit T — O here is that the function yp(&1,&2) changes into its zero
temperature form.

The two-point functions for m= 3.
(070%)Th = §02(0,0) — 3¥(0,0) — §(A2)xx(0,0) + 5 (A2)xy(0,0) — Yxx(0,0) + 3Yxy(0,0)

<0-)1(0-):§>T,h = - %AZ(Oa 0) — %V(Oa 0) + %2(A2)xx(oa 0) — %(AZ)Xy(O7 0) — %VXX(O7 0) + %ny(oa 0)



Conjecture. The density matrix of a finite sub-chain of length m of the infinite XXX Heisenberg chain at finite
T (for h = 0) is determined by the vector

1 of A Am) A
hm(A1, ..., Am) = Z—meQm Letmlgy o sm= [ S5
=1
1 (M=1) " rdyg dip Vo |P—1 i) (M1 — o)
O (Mo Am) // !
A 21 21 [L— (s — o)

x trul,z,z,z{T(Mz“z;;\l,...,Am) ©[T(iAs, - Am) @ T oAz, Am) P},

through
m
8 7 ’8 78 b ’ (3 81)/2’ *9 3 8
h 1 meEm ()\17 )\ ) D(3+81)/2a , 3"‘82 El? Ij
where Aj = —i§j for j =1,...,m. By the integral over l, |2 it is meant to take the residues at the poles
A1,...,Am of the integrand.




Conjecture. The density matrix of a finite sub-chain of length m of the infinite XXX Heisenberg chain at finite
T (for h = 0) is determined by the vector

1 o1
hm()\l, ... ,)\m) = 2—me£2m()\l”)\m)sn, S-n — S:

1 (M=1) " rdyg dip Vo |P—1 i) (M1 — o)
QT (Ar....A // !
A Am) = 2 21 (1 (1 — )2

x trul,z,z,z{T<M2“2;>\1,...,Am) ©[T(iAs, - Am) @ T oAz, Am) P},

through
m
8 7 ’8 78 b ’ (3 81)/27 *9 3 8
h 1 m,€m ()\1, )\ ) D(3+€1)/2, o 3_,_82 El? Ij
where Aj = —i§j for j = 1,...,m. By the integral over J, |2 it is meant to take the residues at the poles

A1,...,Am of the integrand.

In the zero temperature limit this was proved in 2005 by H. E. Boos et al. by means of the reduced gKZ
equation.




e Summary

(i) Multiple integral formula for density matrix (finite T, h, thermodynamic limit performed analytically,
or ground state for finite L and twist ®)

(i) reduction (separation) of integrals for XXX even for finite T, h (finite L, ®)
(iii) Finite temperature (finite length) exponential formula (h = 0) for XXX




e Summary

(i)

(ii)
(iii)

Multiple integral formula for density matrix (finite T, h, thermodynamic limit performed analytically,
or ground state for finite L and twist ®)

reduction (separation) of integrals for XXX even for finite T, h (finite L, ®)
Finite temperature (finite length) exponential formula (h = 0) for XXX

e Further results

(i)
(ii)
(iii)
(iv)
(V)
(vi)

(vii)

Multiple integral formulae for two-point function (resummation of density matrix elements) (FG, N.
P. Hasenclever and A. Seel 05)

Limiting cases, Ising and XX, analytically from the integrals (FG and A. Seel 06)
Open XXZ chain with boundary fields (FG, M. Bortz and H. Frahm 05)
High order high temperature expansions (Z. Tsuboi and M. Shiroishi 05)

Exponential formula for XXZ with T and h finite (H. E. Boos, FG, A. Klimper, J. Suzuki
unpublished)

Inclusion of a disorder parameter and reformulation of the exponential formula in the spirit of CFT
(H. E. Boos, M. Jimbo, T. Miwa, F. A. Smirnov, Y. Takeyama)

‘Phenomenological disorder parameter’ for the finite temperature case (H. E. Boos, FG, A.
Klimper, J. Suzuki unpublished)
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