Particle position fluctuations in the asymmetric exclusion process

17 Feb 2007

T. Sasamoto Chiba University

(based on collaborations with A. Borodin,

P. L. Ferrari, T. Imamura, T. Nagao, M. Prähofer)

1. ASEP

ASEP = asymmetric simple exclusion process

- Each site is occupied or empty.
- During short time dt each particle tries to hop to the right neighboring site w.p. dt.
- If the target site is occupied, the hopping doesn't occur (exclusion).

Interesting Phenomena

Shock wave
 Stochactic version
 of Burgers equation

Boundary induced phase transition

Related Fields

- Nonequilibrium statistical physics
- Probability...Interacting stochastic systems
- Integrable systems
 - *q*-orthogonal polynomials
 - Random matrix theory

2. Particle Position: Step Case

Step initial condition (t = 0)

 $x_N(t)$:position of the *N*th particle at time t

Trajectories in Discrete TASEP

This is *not* free fermion!

Aztec diamond

Domino tilings and Schuffling (Jockusch, Propp, Shor)

TASEP in Aztec diamond

Airy Process

Johansson 2005 $A_2(0), A_2(\tau)$: scaled positions of N_1, N_2 th particles for step

$$A_2(0) = \frac{at - x_{N_1}(t)}{dt^{1/3}}, \quad A_2(\tau) = \frac{at - x_{N_1 + ct^{2/3}}(t)}{dt^{1/3}}$$

$$\mathbb{P}[A_2(0) < s_1, A_2(\tau) < s_2 \ (j = 1, 2)] = \det(1 - K_2\chi_{s_1, s_2})$$

where the kernel is

$$\mathcal{K}_{2} = \begin{cases} \int_{0}^{\infty} d\lambda e^{-\lambda(\tau_{1}-\tau_{2})} \mathsf{Ai}(\xi_{1}+\lambda) \mathsf{Ai}(\xi_{2}+\lambda) & \tau_{1} < \tau_{2} \\ -\int_{-\infty}^{0} d\lambda e^{-\lambda(\tau_{1}-\tau_{2})} \mathsf{Ai}(\xi_{1}+\lambda) \mathsf{Ai}(\xi_{2}+\lambda) & \tau_{1} \ge \tau_{2} \end{cases}$$

GUE Dyson's BM (tGUE)

Time-dependent random matrix

$$H = \begin{bmatrix} u_{11}(t) & u_{12}(t) + iv_{12}(t) & \cdots & u_{1N}(t) + iv_{1N}(t) \\ u_{12}(t) - iv_{12}(t) & u_{22}(t) & \cdots & u_{2N}(t) + iv_{2N}(t) \\ \vdots & \vdots & \ddots & \vdots \\ u_{1N}(t) - iv_{1N}(t) & u_{2N}(t) - iv_{2N}(t) & \cdots & u_{NN}(t) \end{bmatrix}$$

 $u_{jk}(t), v_{jk}(t)$: OU process (Brownian motion in potential)

Dynamics of eigenvalues

$$A_2(0), A_2(au) \cdots$$
 Airy process

Step \Leftrightarrow tGUE

3. Particle Position: Alternating Case

One(N_1 th) particle (Baik, Rains, Prähofer, Spohn) · · · · GOE Conjecture

	step	alternating
1р	GUE	GOE
2р	tGUE	tGOE?

tGOE= GOE Dyson's BM (= a special case of Calogero model)

Determinantal Green's function

Schütz 1997

Probability $G(x_1, \dots, x_N; t) (= G(x_1, \dots, x_N; t | y_1, \dots, y_N; 0))$ that N particles starting from y_1, y_2, \dots, y_N ($y_N < \dots < y_1$) are on x_1, x_2, \dots, x_N ($x_N < \dots < x_1$) at time t

$$G(x_1, x_2, \cdots, x_N; t | y_1, y_2, \cdots, y_N; 0) \quad (= G(x_1, x_2, \cdots, x_N; t))$$

$$= \det[F_{k-j}(x_{N-k+1} - y_{N-j+1}; t)]_{j,k=1,\cdots,N}$$

$$= \begin{vmatrix} F_0(x_N - y_N; t) & F_{-1}(x_N - y_{N-1}; t) & \cdots & F_{-N+1}(x_N - y_1; t) \\ F_1(x_{N-1} - y_N; t) & F_0(x_{N-1} - y_{N-1}; t) & \cdots & F_{-N+2}(x_{N-1} - y_1; t) \\ \vdots & \vdots & \vdots \\ F_{N-1}(x_1 - y_N; t) & F_{N-2}(x_1 - y_{N-1}; t) & \cdots & F_0(x_1 - y_1; t) \end{vmatrix}$$

where $F_n(x;t) = e^{-t} \frac{t^x}{x!} \sum_{k=0}^{\infty} (-1)^k \frac{(n)_k}{(x+1)_k} \frac{t^k}{k!} \implies NS2004$

Reinterpretation of G

Two particles

$$G(x_1, x_2; t) = \begin{vmatrix} F_0(x_2 - y_2; t) & F_1(x_1 - y_2; t) \\ F_{-1}(x_2 - y_1; t) & F_0(x_1 - y_1; t) \end{vmatrix}$$
$$= \sum_{x_2^2(>x_1^2)} \begin{vmatrix} \phi(x_1^1, x_1^2) & \phi(x_1^1, x_2^2) \\ 1 & 1 \end{vmatrix} \begin{vmatrix} \psi_0^{(2)}(x_1^2) & \psi_0^{(2)}(x_2^2) \\ \psi_1^{(2)}(x_1^2) & \psi_1^{(2)}(x_2^2) \end{vmatrix}$$

where $x_1^1 = x_1, x_1^2 = x_2$ and

$$\phi(x_1, x_2) = 0(x_1 > x_2), \quad -1(x_1 \le x_2)$$

$$\psi_0^{(2)}(x) = -F_{-1}(x - y_1; t)$$

$$\psi_1^{(2)}(x) = F_0(x - y_2; t)$$

Auxiliary weight

$$\begin{split} &\prod_{r=1}^{N-1} \det[\phi(x_j^r, x_k^{r+1})]_{j,k=1}^{r+1} \cdot \det[\psi_j^{(N)}(x_{k+1}^N)]_{j,k=0}^{N-1} \\ &= \begin{vmatrix} \phi(x_1^1, x_1^2) & \phi(x_1^1, x_2^2) \\ 1 & 1 \end{vmatrix} \begin{vmatrix} \phi(x_1^2, x_1^3) & \phi(x_1^2, x_2^3) & \phi(x_1^2, x_3^3) \\ \phi(x_2^2, x_1^3) & \phi(x_2^2, x_2^3) & \phi(x_2^2, x_3^3) \\ 1 & 1 & 1 \end{vmatrix} \cdots \\ &\times \begin{vmatrix} \psi_0^{(N)}(x_1^N) & \psi_0^{(N)}(x_2^N) & \cdots & \psi_0^{(N)}(x_N^N) \\ \psi_1^{(N)}(x_1^N) & \psi_1^{(N)}(x_2^N) & \cdots & \psi_1^{(N)}(x_N^N) \\ \vdots & \vdots & \vdots \\ \psi_{N-1}^{(N)}(x_1^N) & \psi_1^{(N)}(x_{N-1}^N) & \cdots & \psi_{N-1}^{(N)}(x_N^N) \end{vmatrix} \\ & \\ \text{where} \quad \psi_j^{(r)}(x) = (-1)^{r-1-j} F_{-r+1+j}(x-y_{j+1};t) \end{split}$$

Non-colliding walk interpretation

Let \mathbb{P} denote the corresponding measure. We have

$$G(x_1, \cdots, x_N; t) = \mathbb{P}[x_1^r = x_r \ (r = 1, \cdots, N)]$$

TASEP particle configuration = dynamics of the 1st walker

"Half alternating" initial condition

- Each particle cannot affect the particles on its right
- Same as alternating case deep inside the negative (x < 0) region

Joint distribution for Alternating

S2005, BFPS 2006 $A_1(0), A_1(\tau)$: scaled positions of 2 particles for alternating

$$\mathsf{Prob}[A_1(0) < s_1, A_1(\tau) < s_2] = \det(1 - K_1\chi_{s_1, s_2})$$

$$K_1(\tau_1,\xi_1;\tau_2,\xi_2) = \tilde{K}_1(\tau_1,\xi_1;\tau_2,\xi_2) - \Phi_1(\tau_1,\xi_1;\tau_2,\xi_2)$$

where

$$\tilde{K}_{1}(\tau_{1},\xi_{1};\tau_{2},\xi_{2}) = \frac{1}{2}e^{\frac{(\tau_{2}-\tau_{1})(\xi_{1}+\xi_{2})}{4} + \frac{(\tau_{2}-\tau_{1})^{3}}{12}} \operatorname{Ai}\left(\frac{\xi_{1}+\xi_{2}}{2} + \frac{(\tau_{2}-\tau_{1})^{2}}{4}\right)$$
$$\Phi_{1}(\tau_{1},\xi_{1};\tau_{2},\xi_{2}) = \begin{cases} \frac{1}{\sqrt{8\pi(\tau_{2}-\tau_{1})}} \exp\left[-\frac{(\xi_{2}-\xi_{1})^{2}}{8(\tau_{2}-\tau_{1})}\right] & \tau_{1}<\tau_{2}\\ 0 & \tau_{1}\geq\tau_{2} \end{cases}$$

Alternating $\stackrel{?}{\Leftrightarrow}$ tGOE (GOE Dyson's BM)

2pt correlation

$$g_j(\tau) = \sqrt{\frac{\langle (A_j(\tau) - A_j(0))^2 \rangle}{2}} \quad (j = 1, 2)$$

4. Tagged particle problem

IS 2007

Position of Nth particle for the step initial condition.

$$t/N = (\sqrt{t/N} - 1)^2$$

$$A_2(\tau)$$

$$A_2(0)$$

$$x/N$$

Airy process \Rightarrow Poster by Imamura

5. Summary

- Fluctuations of ASEP is often described by RMT
- Aztec diamond, Green's function \rightarrow free fermion
- Spatial correlation for the alternating case

Future Problems

- Two-time correlation
- Finite geometry
- Partially ASEP

Conclusion

Wadati group is a good group

- Good people (students, postdocs, colleagues, etc)
- Good atmosphere (academic, international, free)
- Good Professor

When asked "What is your best paper ?", Wadati-sensei replied "The next one".