Perspectives on Soliton Physics
February 17, 2007

Modulational instability
In the presence of damping

Harvey Segur
University of Colorado

Joint work with:
J. Hammack, D. Henderson,

J. Carter, W. Cralig,
C-M LI, M. Oscamou, D. Pheiff, K. Socha



Nonlinear wave propagation
In the 1960s

1960 - first successful laser
1961 - observations of optical nonlinearity



Nonlinear wave propagation
In the 1960s

1960 - first successful laser
1961 - observations of optical nonlinearity
1961 - Gross-Pitaevski eg’n



Nonlinear wave propagation
In the 1960s

1960 - first successful laser

1961 - observations of optical nonlinearity
1961 - Gross-Pitaevski eg’n

1965 - Solitons! (Zabusky & Kruskal)

1967 - (Gardner, Greene, Kruskal, Miura)



Nonlinear wave propagation
In the 1960s

1960 - first successful laser

1961 - observations of optical nonlinearity
1961 - Gross-Pitaevski eg’n

1965 - Solitons! (Zabusky & Kruskal)

1967 - (Gardner, Greene, Kruskal, Miura)
1967 - theory of modulational instability

(Lighthill, Zakharov, Ostrovsky, Whitham,
Benjamin & Feir, Benney & Newell)



Modulational instability

e Dispersive medium: waves at different
frequencies travel at different speeds

* In a dispersive medium without dissipation,
a uniform train of plane waves is likely to be
unstable



Modulational instability

Dispersive medium: waves at different
frequencies travel at different speeds

In a dispersive medium without dissipation,
a uniform train of plane waves is likely to be

unstable

The unstable modes have nearly the same
frequency as carrier wave

Maximum growth rate:

Qod Af



Experimental evidence of modulational
iInstability in deep water - Benjamin & Feir (1967)

from Benjamin (1967):
frequency = 0.85 Hz, wavelength = 2.2 m,
water depth=7.6 m



Experimental evidence of modulational
Instability in an optical fiber

Effect of fiber loss 287

Hasegawa & Kodama

“Solitons In optical
communications”

% X (1995)
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Fig.15.1 Experimental observation of modulational instability (Tai er al.
1986a). Input power level low (a); 5.5 W (b); 6.1 W (c); 7.1 W (d). For details
see text.



Experimental evidence of apparently
stable wave patterns in deep water

(www.math.psu.edu/dmh/FRG)

QuickTime™ and a
Motion JPEG OpenDML decompressor
are needed to see this picture.

3 Hz wave 4 Hz wave

17.3cm  wavelength 9.8 cm



Two guestions to answer:

e Do we need to rethink the modulational
instability? If so, why?

 Are the 2-dimensional wave patterns
produced In the Penn State lab stable
or unstable? For either answer, why?



More experimental results
(www.math.psu.edu/dmh/FRG)

3 Hz wave 2 Hz wave
(old water) (new water)



Main results

 The modulational (or Benjamin-Feir)
instability is valid for waves in deep water
without dissipation



Main results

The modulational (or Benjamin-Feir)
Instability is valid for waves in deep water
without dissipation

But any amount of damping (of the right kind)
stabilizes the instability

This dichotomy (with vs. without damping)
applies to both 1-D plane waves and to 2-D
periodic surface patterns

Sequr, Henderson, Carter, Hammack, Li, Phelff,
Socha, J. Fluid Mech., 539, 2005

Controversial



To derive the nonlinear
Schrodinger equation

Surface slow modulation fast phase

Elevation / é/
* _i0

C(X,Y,t) = dA(eX, £°%, ey, et)e'’ + Ae 71+ O(s%)

Velocity
Potential

A X, Y,Z,t8) =0(e)



NLS equation in 1-D

i(GA+CcAA) +dadA+E|AF A ]=0

[th—i,X :55]
C C

IO A+alA+E|APA =0

T




NLS equation in 1-D with
damping

i(GA+CAA) +dad A+ E|AF A+idoA]=0

[th—i,X :55]
C C

i A+adA+E|ATF A+idA=0
[A(7,X)=e " A(r,X)]

IO A+adA+E-e? AP A=0



i A

NLS in 1-D, cont'd

ad’ A

e |AFA=0

d
Hamiltonian equation, but ——#0

H=i|[ax|OAF-

dX

ge‘%x |A[*]dr

Conjugate variables: A, A*



IO A+adA+E-e |A A=0, contd

e Uniform (in t) wave train:

. , 1—e™
A=Agexplig] A, [ ()}




IO A+adA+E-e |A A=0, contd

e Uniform (in t) wave train:

. , 1—e™
A=Agexplig] A, [ ()}

 Perturb:

—20X

A(7,X) =exp{iZ | A, [ (1‘2‘"5 VHI A, |+A(U+ iv)}+ O(Z)




iﬁxA+OlOfA+§-e_Zéx ‘A‘Z A =0 . contd

e Uniform (in t) wave train:

. , 1—e™
A=Agexplig] A, [ ()}

 Perturb:

A(7,X) =exp{iZ | A, [ (1‘2‘"5 VHI A, |+A(U+ iv)}+ O(Z)

e ...algebra..
2/\
d-u

et [oq°(eq® —2&-e7 | A, [)]- U=0




Effect of fiber loss 287
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Fig.15.1 Experimental observation of modulational instability (Tai er al.
1986a). Input power level low (a); 5.5 W (b); 6.1 W (c); 7.1 W (d). For details
see text.

If we eliminate o; from (15.1.11) and (15.1.12) and construct the
differential equation for the normalized side band amplitude 5, = p1/po

—2&-e | A P)]- =0

(po is given by (15.1.9)), we get Hasegawa &KOdama

dP 2 —arz Q? o
172 Q( T p=0. (15.2.1)

If we introduce a quantity R which designates the ratio of €2? to pq,
= 0?/p,, R may be expressed in terms of engineering parameters as
2
rRE® g% 104f (=X°D) , (15.2.2)
£o

(1995)



d?0

oz Hlad’(ad” ~2¢-e™ [A, [)]- =0, contd



d“Q
dXx*

+[ag(ag® —2&-e°” | A, [)]-G=0 , contd

 There is a growing mode if

[eq”(em® —2& -7 | Ay )] <O



d“Q
dXx*

+[ag(ag® —2&-e°” | A, [)]-G=0 , contd

 There is a growing mode If
[0q° (o™ —2& e | Ay [)] <0

 For any o> 0, growth stops eventually
=>»No mode grows forever
=» Total growth is bounded



What Is “linearized stability”?
(Lyapunov)

The uniform wave train solution is linearly stable if for
every ¢ >0thereisa A(e) >0 suchthatifa
perturbation (u,v) satisfies

| [U3(7,0)+V3(r,0)[dr<A(e)  atX=0,

then necessarily

j [u®(7,X)+Vv?*(z,X)]dr <& forall X>O0.



1-D NLS with damping,
conclusion

d?0

—+ a0’ (e’ — 2877 | A, [)]-U=0
dX

=>» There is a universal bound, B: the total growth of
any Fourier mode cannot exceed B

=» To demonstrate stability, choose A(e) so that

1
A(€)<?'€

Nonlinear stability is similar, but more complicated



Experimental verification of theory

1-D tank at Penn State



Experimental wave records
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Amplitudes of seeded sidebands
(damping factored out of data)
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damped NLS theory
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Amplitudes of unseeded sidebands
(damping factored out of data)
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Amplitude of carrier wave, harmonic
(damping factored out of data)
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Decay rate of 2nd harmonic is twice that
of carrier wave. Stokes (1847):.

A, (7, X) =k A7, X)}



Numerical simulations of full water wave
equations, plus damping

A note on stabalizing the Benjomin-Fear instabilify 5
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Are the 2-D patterns
also stable?




2-D periodic surface patterns

Q: How to make 2-D periodic surface wave
patterns experimentally?

One method:% %

n=a-cos(kx + ly —mt) + a- cos(kx — ly — wt) + O(a*)
=2a- cos(kx — at) - cos(ly) + O(a*)




2 coupled NLS equations, with damping:

0=1(GA+USA+VAIA)+
dad’A+ A+ yo A+ AP A+ |BF A+idA],

0=i(gB+ugB-vgB)+
§_[a&fB+,B&’y”B—7/&té’yB+§|B|2 B+ |Af B+idB].




Linear stability, with damping:
(preliminary result)
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Thank you for your attention




How to measure o ?
IGA+ad A+ E|AT A+ioA=0

Integral quantities of interest:
M(X)= | |A(ZX)Pdz,  M(X)=M(0)- e

P(X)=i| [AdA*-A*sAldz, P(X)=P(0)-e*>



Theory for 2-D periodic

surface patterns

2 coupled NLS equations with damping
No preferred coordinate system
Change variables

A(X,y,1) =e > A(X,Y,1),
B(x,y,t) =e“*B(x,Y,1).

: : : dH
The new equations are Hamiltonian, - #9

=> |inearized stability (in Lyapunov sense)



Conference on tsunami and nonlinear waves

Stabilizing the Benjamin-Feir (or
modulational) instability
(no relation to tsunamis)

Harvey Segur
University of Colorado, USA
Joint work with:

D. Henderson, J. Carter, W. Craig, J. Hammack, C-M Li,
M. Oscamou, D. Pheiff, K. Socha



Stable patterns of surface
waves In deep water

by
Joe Hammack™ (1944-2004)

Diane Henderson (Penn State)

Harvey Segur (Colorado)
Maribeth Bleymaier, John Carter,
Cong-Ming Li, Dana Pheiff, Katherine Socha

NCAR workshop on
Coherent Structures in Atmosphere and Ocean
Boulder, CO
July 13, 2005



If stable patterns of surface
waves exist in deep water,
then they are
Coherent Structures.

Do stable wave patterns
exist In deep water?



Universiteit van Stellenbosch
April 11, 2006

Stabilizing the Benjamin-Feir (or
modulational) instability

Harvey Sequr
University of Colorado, USA
Joint work with:

D. Henderson, J. Carter, W. Craig, J. Hammack,
C-M Li, M. Oscamou, D. Pheiff, K. Socha



Equations of (inviscid) water
waves

2= (%Y1 gv
U-V(z+h(x,y))=0 \

() On bottom, z = -h(x,y)

(i) In fluid, -h <z < {(x,y,1)
U=Vg,  v2$=0

(iii) At free surface, z = £(x,y,1) z=-h(X,y)
as+Ve-Vg=0o9,
ap+5 Vol +9¢=0.

(iv) Ignore viscosity, surface tension, variable density, fish, ...



What about a higher order
NLS model (like Dysthe) ?

, damped NLS ----, NLS - - -, Dysthe

e o o experimental data



Colorado State University
November 13, 2006

Stable, periodic wave patterns
In deep water

Harvey Segur
University of Colorado

Joint work with:
J. Hammack, D. Henderson,
J. Carter, W. Craig,
C-M Li, M. Oscamou, D. Pheiff, K. Socha



Equations of (inviscid) water
waves, In deep water

() In fluid, z < Z(x,y,1)

J
U:V¢1 V2¢:O g
w
(iyAs Z—>—00, U0 D

(i) At free surface, z = {(x,y,1)

oc+Ve-Vg=0¢,
a¢+%|Vel +9¢=0.

(iv) Ignore viscosity, surface tension, variable density, fish, ...



Basic facts about wave propagation
(according to linear theory)

Sound waves
o All travel at the same speed (speed of sound)

Water waves
* Longer waves travel faster than shorter waves
(for gravity-induced surface water waves)



Basic question:

s a uniform train of 1-D surface waves
of finite amplitude on deep water
stable?



Basic question:

Is a uniform train of 1-D surface waves
of finite amplitude on deep water
stable?

Slight variation:

Is a uniform train of 1-D
electromagnetic waves of finite
amplitude in a dispersive optical fiber
stable?



Basic guestion:

Is a uniform train of 1-D surface waves of
finite amplitude on deep water stable?

Variations:

Is a uniform train of 1-D electromagnetic
waves of finite amplitude in an optical fiber
stable?

What about Langmuir waves in a plasma?
Spin waves in a thin magnetic film?



How to reconcile the experimental
observations with Benjamin-Feir
Instability?

Recall: In deep water without dissipation, a uniform
train of monochromatic plane waves (with 1-D
surface patterns) with finite amplitude (|A|) is

unstable to small perturbations with nearly the same
frequency.

The maximum growth rate of the instability is

Qo =CA[



How to reconcile the experimental
observations with Benjamin-Feir
iInstabllity?

Options
« Modulational instability afflicts 1-D plane
waves, but not 2-D periodic patterns

e The Penn State tank Is too short to observe
the (relatively slow) growth of the instability

 Other (please specify)



Skip the detailed analyis

How does damping affect the
modulational instability?

e Common effect

calculate theoretical growth rate,
without damping

Observed decay rate =
predicted growth rate - decay rate



Skip the detailed analyis

How does damping affect the
modulational instability?

e 2nd (important) effect
predicted growth rate without damping

Qod Af



Skip the detailed analyis

How does damping affect the
modulational instability?

« 2nd (important) effect
predicted growth rate without damping

Qod Af

predicted “growth rate” with damping

QOC‘ A ‘2 e—2t5



Skip the detailed analyis

How does damping affect the
modulational instability?

QOC‘ A ‘2 e—2t5

e For any 0> 0, growth stops eventually
= No mode grows forever
=» Total growth is bounded
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