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1 Toda = KM =LV
1.1 KM =1LV

KM (Kac-van Moerbeke) model:

% — e Hi-1 _ o Bjt
If we set
u; = e i,
then (1) is transformed to
LV (Lotka-Volterra) model:
du,

il (i1 —uj—1),

since

du; R dR; "R/ —R. _R.
ki <_d—t]> = e~ (e —em ) =y (w1 — ujoa).



[Note] scale invariance

For constant «, LV eq.(2) is invariant by the scaling:

u; — au; and t — t/a



1.2 KM = Toda

Toda lattice:

@ — p. ﬁ — ¢ (Qj=Qj-1) _ ,—(Qj+1-Qj)
dt 7 dt

Setting r; = Q41 — @, we have equivalent form
dzrj
—= =2 " —e "Il —e T,
dt?
If we suppose r; = Ry + Raj41, where R;’s are KM,
dr; —Ry; —Ra; —Ro; —Ro;
= (7 e ) o (67T — TR ) = (ugy 1 — ugjia) + (ug; — uzjy2),
and differentiate this again, we have

2.
d=r;

. —uzj-1(uzj — uzj-2) — Uzgy(Uzjee — uzj) + uz;(ugji1 — uz-1) — uzjra(uzjts — uzj+1)
:2U2juzj+1 — U25—2U25 -1 — U2542U254+3

=2e " —e Timt — eIt

which implies KM = Toda.



1.3 Discretization

dToda:

n+lyn+1 _ 1n n n+1 n __ 1.2 n n+1
LRV =V T = =k (V= Vi),

where we set

Vij=e (@Qn1=Qi) —¢™ " [ =1-hP;.
Heuristic derivation:
v ne1 dr; 1 — hP; I
‘/"j’l’b € dt ( .7+1 ]) 1 . th I}l—i_lj

and

n n n ny ~v dp; —(Q,;,—Q; —(Qj11—Qj) )\ ~ n n
[ - I = (PPt = Py o2 = (e (@m0 (@) g (v - Vi)

dt



dLV:

J J _ . n.n _on+l, n+l n+1 n+1 __ n n
= = ujuly — Uy = (1+hufT))ui™ = (14 hujy)uj

[Note] We can prove dToda = dLV, if we set

Vit =ugjugipy, I = (14 hug; o) (14 hug;),

since
IV = (1 b ) (1 ) g
= (L+ hugjq)ug; - (14 huggyo)ug; g = 15 V],
and

[ 1 = (1 hul ) (1 bty — (14 hug; 1) (1 + hub))

_ n+1 n n+1 n 2/ n+l1  n+1 n n

= h<u2j—1 —Ugj 1 T Uy T — Uzj) +h (Uzj—ﬂ‘zj - U2j—1“2j)

_12/.m n n+l  n+1 n._ n n+l n+1 2/ n+l1  n+l1 n n
=h (u2j—1u2j — Ugj_qUgj o F UgjUsjyy — Us; “2j—1) +h (u2j—1u2j - “23'—1“23')

_ L2, _ antl n+tl
=h (u2ju2j+1 “2]'—2“23‘—1)

= WAV} = Vi)



1.4 Discrete Backlund Transformation
Bicklund transformation for Toda: (Wadati-Toda, JPSJ 39, (1975) 1196)
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A Bicklund transformation associated with the equation of motion
for an exponential lattice is found. It is shown that recursive applica-
tion of the transformation provides an algebraic recursion formula for
the solutions. Using the recursion formula, two-soliton solution is
obtained and a method for constructing N-soliton solution is presented.
It is also shown that the fundamental equations of inverse method and
conservation laws can be derived from the transformation.



Backlund transformation has the simplest form in terms of KM

dRZJ _ A <€—R2j+1 . e—RQj_1> dR2j+1 . l (e—R2j+2 €_R2j) (8)
— L = =
dt dt A
And these can be discretized as

n+1 n n+1 n
us T —ul. us T —ul. 1

27 27 n . n n+1 n+1 25+1 27+1 n n n+1l n4+1
-5 - B (u2ju2j+1 — Uy, u2j—1) ’ h - B (u2j+1U2j+2 — Ui Uy ) , (9)

which is rewritten, by setting hg = hB, hy = h/B, as
(1+ hougf_lﬁugjl = (1 + houg;1q)uy;, (1+ hlug;rl)ugyttll = (L4 hiugjio)us;g.
Then, if we put
an = ugjugj—i—l? I;L = (1+ hougj—l)(l + hlugj)? (10)
we get dToda again
. /U e Y R vl

j+1 J J

where hoh; = h? is used.
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2 Determinant and Simulation

2.1 Determinant Expression for dLV

dLV with Periodic Boundary Condition
We consider dLV

(L4 hufui™ = (1+ huj_y Jug,

with periodic boundary condition u;yn = uj. Setting z7 = hu’, we have

(L + a2y )af ™ = (1 + a5 )] (11)

Case of N = 3:
14+ X1)Xo=(1+2x2)z0, (14+X2)Xi=(1+20)r1, (1+X3)Xo=(14z1)x2

have solution

1+ 22+ 2129 14+ 29 + z220 14+ 21 + zox1
X():l‘o X X1:£171 5 X2:$2 y
14+ 21 4+ 2011 1422 + 2129 14+ 29+ 2270

which are expressed as

A, A, Aq
Xy = 2122 Xy =y
A, T TIA R TAL

11

Xo =x0——



Note that Ay has a determinant form:

General case of N:
We have
Aq
X = _- .
0 xO AO, Y
where
1
—(1 + xo)
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Other Models
We have similar Determinant Formulas (K. Sogo, JPSJ 75, (2006) 084001) for

dKdV, dToda, dKP eic. .

Such explicit expressions can be used in numerical simulations quite effectively.
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2.2 Simulations

dLV

dLV with 4 solitons.
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dKdV

Zabusky-Kruskal case.
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Real-Time Simulation of dLV of N =3

#1v3.py
from Tkinter import x*
WIDTH=800
HEIGHT=600
h,h2=0.001,hx*h
x0,x1,x2=2.0,1.0,0.5
canvas=Canvas (width=WIDTH, height=HEIGHT,bg=’white’)
canvas.pack(expand=YES, fil1=BOTH)
for n in range(0,8000):
DO,D1,D2=1+h*x1+h2*x0%x1,1+h*x2+h2*x1*x2,1+h*x0+h2*x2*x0
x0,x1,x2=x0*D1/D0,x1*D2/D1,x2*xD0/D2
if ((n%10)==0):
xx,y0,y1,y2=n/10,HEIGHT-x0%200 ,HEIGHT-x1%200 ,HEIGHT-x2*200
canvas.create_rectangle (xx,y0,xx,y0,width=1,fill="black’)
canvas.create_rectangle(xx,yl,xx,yl,width=1,fill="black’)
canvas.create_rectangle (xx,y2,xx,y2,width=1,fill="black’)

mainloop()
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3 body dLV
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3 Toda = Baxter ?
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3.1 Solution of 3 body LV

Differential equations

dx d dz
- = 2w —2), Dmyle—u), T =z—y)

can be solved by using the conservation law
r+y+z=a, zyz=1.
Eliminating y and z, we have
dr\ 2
(d_?f) = 2(2® — 2a2? + o’z — 4),
where the RHS is factorized by real numbers a > g > v > 0 as
dz\?
(%) =ole ===,
which satisfy

Va= Vit
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Equation (14) is solved as

~y B—~ o Bla—7)
" 5 sn“¢, <§ wt, w 5 (15)
The modulus of the elliptic functions is defined by
s a -1
K = — 16
B a—v (16)
Others are
gl =72 gl b=
- =1- sn’ (€ + (), L=1- sn? (€ + 20),
’ S0, (€ +20)

where ¢ = 2K (k)/3. These recover the results of simulation.
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3.2 Calculation by Toda

Toda gave a calculation of N=3 Toda lattice with a special symmetric initial condition, which contains

(3) -V
sn| — ) =14/—.
3 Qo

And his results have one to one correspondence with ours of N =3 LV.

several hard calculations such as

Why ?

Although the solutions of N = 3 Toda are, in general, expressed by hyperelliptic functions of g = 2,
Toda’s solution is expressed by elliptic functions of g = 1. The situation may be interpreted as follows.

In general, we have an equivalence:
(3 body Toda) = (6 body LV).
There is the case, however, that the period of LV is reduced from 6 to 3, that is,

Rs =Ry, Rys=Ri, Rs=R,.

22



Using the Backlund relations, these are satisfied when
Q6:Q27 Qll :Q07 Q/2:Q17

and simulations of this case give a behavior of g = 1.

Further we have another similarity of 3 body LV with Baxter’s eight vertex model. For example,
the RHS of (15) can be factorized as

sn’  ©*(0)H(n—&H(n+¢) 2 B
sn2y H?(n)©2(¢) ’ ( ) o

which is a familiar formula in the eight vertex model.

1 —

This coincidence indicates also that the spectral parameter of the eight vertex model corresponds to
time variable £ of LV = Toda with PBC.

Such is the reason of the statement

Toda = Baxter.
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3.3 Simulations of 3 body Toda by using 6 body LV

Symmetric Case
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Asymmetric Case
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